{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# __Scenario A:__
Chymotrypsin inhibiton by an *in silico* designed albumin fusion protein\n", "\n", "Data provided by Marwa Mohamed (Institute of Cell Biology and Immunology, University of Stuttgart, Germany)\n", "\n", "## Project background\n", "In this scenario, the binding of an *in silico* designed protein to an enzyme was assessed by determining the inhibitory constant $K_{i}$. Thereby, the efficiency of a newly developed approach to computationally design protein binders to deliberately chosen targets was demonstrated. \n", "This was done by comparing $K_{i}$ of the designed human serum albumin variant (HSA(M3)) to the wild-type (HSA(WT)) by respectively applying the proteins to chymotrypsin enzyme reactions. Both designed proteins were individually dimerized into fusion proteins through a huFc.\n", "\n", "### Experimental design\n", "\n", "Enzyme activity was monitored by measuring the product formation of p-nitroanilin (p-NA) photometrically at 410 nm for 30 min at 30°C. Therefore, Succinyl-gly-gly-phe-p-nitroanilide (SGGPpNA) was applied as substrate in a concentration range of 0.25 - 2 mM. For concentration calculations, a p-NA standard was prepared in the range of 0 - 0.3 mM in duplicates. $K_{i}$ of HSA(WT)-huFc and HSA(M3)-huFc on chymotrypsin were investigated in independent experiments. Each experiment consisted of enzyme reactions with and without the respective HSA variant. Each enzyme reaction contained 0.2 µM of enzyme and 26.88 µM of the respective HSA variant, if inhibitor was applied. All enzyme reactions were prepared in duplicates. \n", "\n", "### Data management\n", "\n", "Experimental data and meta data was filled in EnzymeML Excel templates for each of the two inhibition experiments respectively. Calibration data was stored as Excel files. Measurement data was already blanked.\n", "\n", "## Data preparation\n", "\n", "### Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "hide_cell" ] }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import pyenzyme as pe\n", "import copy\n", "import string\n", "from IPython.display import display\n", "from EnzymePynetics.tools.parameterestimator import ParameterEstimator\n", "from CaliPytion .tools.standardcurve import StandardCurve\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Concentration calculation\n", "\n", "Product standard data was imported directly from an Excel file. Then, a standard curve was created." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [ "hide_input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Calibration data was automatically blanked.\n" ] }, { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 AIC
Quadratic-161
3rd polynominal-161
Linear-143
Rational-141
Exponential-17
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxGElEQVR4nO3dd3xUVfrH8c9D6B2klwAqoDRFAuiuXRQ7sLorqGtffltcd1fFXsCurGtvyLrWFRWRRcWCir0BYhI6oScgndAh5fn9MRccQ8qEZDIzyff9euXFzL3n3vucjM6Tc8+555i7IyIiVVe1WAcgIiKxpUQgIlLFKRGIiFRxSgQiIlWcEoGISBWnRCAiUsUpEUjMmNlSMxsQvL7JzMYGrzuamZtZ9She+xgzmx+t8ycaM7vLzNaZ2U+xjkUqnhKBxAV3v8fdr4jW+YPEcnDY9b5w967Rul4iMbNk4Bqgm7u3KuWxV5rZdDPbZWbPRyVAibqo/cUlUlHMrLq758Y6jvJUwXVKBta7+5r9OHYlcBcwEKhTrlFJhVGLQMrMzNqb2QQzW2tm683s8WD7QWb2SbBtnZm9YmaNizjHSDN7ucDmy8xspZmtMrNrC5Qdb2Yvm9lm4BIz62dm35jZpqD842ZWMyj/eXBoqpltNbPzzOx4M8sMO+ehZvZpcPxsMzs7bN/zZvaEmb1rZlvM7DszO6iY38fRZvZ1cK4VZnZJsP1TM7sirNwlZvZl2Hs3s7+Y2UJgoZk9ZWb/LHDu/5nZ1cHrNmb2ZvB7X2JmVxUTUyMzezEou8zMbjGzasGtuSlAm+B383whxzYzs3eC+mwwsy/MrBqAu09w94nA+qKuLfFPiUDKxMySgHeAZUBHoC0wbs9u4F6gDXAo0B4YWYrTnwB0Bk4Brt/TnxAYBIwHGgOvAHnAP4BmwFHAScCfAdz92OCYw9y9vru/VqAONYC3gQ+BFsBfgVfMLPzW0VBgFNAEyADuLixgM+sAvAc8BjQHDgd+LEWdBwP9gW7Aq8B5ZmbBuZsQ+l2MC76I3wZSCf3OTwL+bmYDizjvY0Aj4EDgOOAi4FJ3/wg4DVgZ/G4uKeTYa4DMoD4tgZsAzU1TiSgRSFn1I/RFP8Ldt7n7Tnf/EsDdM9x9irvvcve1wL8IfQlFalRwznTgP8CwsH3fuPtEd8939x3uPsPdv3X3XHdfCjxTimsdCdQH7nP33e7+CaHkFn69t9z9++B2zSuEvuALcz7wkbu/6u457r7e3X+MtMLAve6+wd13AF8Q+sI9Jth3LqF6rwT6As3d/Y4g5sXAs4QS1i8EyXoocKO7bwl+Pw8Cv48wphygNdAhqNMXrknKKhUlAimr9sCywu5nm1lLMxtnZlnBLZyXCf3FHqkVYa+XEUo4he3DzLoEty9+Cq51Tymu1QZY4e75Ba7XNux9+Gia7YQSR2HaA4sivG5h9tYr+LIdx88J6XxCSQigA6HbOZv2/BD6S71lIedsBtQgVKc9CtavOKMJtYI+NLPFZnZDhMdJglAikLJaASQXMdTzHkJ/0fZ094bAhYRuF0WqfdjrZEIdk3sU/Iv0KWAe0Dm41k2luNZKoP2e+95h18sqRax7rACK6j/YBtQNe1/YCJ2C9XoVODe45dQfeDPsOkvcvXHYTwN3P72Qc64j9Fd9h7BtEdcvaEVc4+4HAmcDV5vZSZEcK4lBiUDK6ntgFXCfmdUzs9pm9utgXwNgK5BtZm2BEaU8961mVtfMugOXAq8VU7YBsBnYamaHAH8qsH81ofvjhfmO0F/515lZDTM7HjiLn/s6SuMVYICZ/c7MqpvZAWZ2eLDvR+A3QZ0OBi4v6WTuPpPQF/lY4AN33xTs+h7YYmbXm1kdM0sysx5m1reQc+QBrwN3m1mDIKlcTaiFViIzO9PMDg76KrIJ9cfkB/uqm1ltIAlICj5/jUZMMEoEUibBl8xZwMHAckKdiucFu0cBRxD68ngXmFDK039G6JbEx8A/3f3DYspeS+jWyRZC98oLJo2RwAvBbZTfFajD7qAOpxH60n0SuMjd55UyXtx9OXA6oQ7WDYS+/A8Ldj8E7CaUlF7g59s8JfkvMCD4d8918oAzCfVVLOHnZNGoiHP8lVCLZDHwZXCu5yK8fmfgI0JJ/RvgSXefGuy7BdgB3ECoxbcj2CYJxNTnIyJStalFICJSxSkRiIhUcUoEIiJVnBKBiEgVl3DDvJo1a+YdO3aMdRgiIgllxowZ69y9eWH7Ei4RdOzYkenTp8c6DBGRhGJmy4rap1tDIiJVnBKBiEgVp0QgIlLFKRGIiFRxUUsEZvacma0xs1nFlDnezH4MVoT6LFqxiIhI0aI5auh54HHgxcJ2WmjJwieBU919uZm1iGIsIiIJa+LMLEZ/MJ+Vm3bQpnEdRgzsyuDekS4nUbKoJQJ3/9zMOhZT5HxgQjBbI/u5cLaISKU2cWYWI8ankpMXmiA0a9MORoxPBSi3ZBDLPoIuQJNgQe8ZZnZRUQXNbLiZTTez6WvXrq3AEEVEYmvU27P3JoE9cvKcUW/PLrdrxDIRVAf6AGcAAwktQtKlsILuPsbdU9w9pXnzQh+MExGplDZuzynV9v0RyyeLM4H17r4N2GZmnxNawGNBDGMSEYkbs7KyK+Q6sWwR/A84Oljqri6h9VjnxjAeEZG4kJOXzyMfLWTwE18VufB24zo1yu16UWsRmNmrwPFAMzPLBG4HagC4+9PuPtfM3gfSCK1/OtbdixxqKiJSFSxYvYVrXk8lPSubwYe3oW/HpoycNJuc/J/7CWpUM0ae3b3crhnNUUPDIigzGhgdrRhERBJFXr4z9ovFPPjhAhrUrs7TFx7BqT1aA1CvVvXEHD4qIiKRWbpuG9e8kcqMZRs5tXsr7hrSg2b1a+3dP7h323L94i9IiUBEJEby852Xvl3Gfe/No0aS8fB5hzPo8DaYFdUzEB1KBCIiMZC5cTvXjU/j60XrOb5rc+77TS9aNaodk1iUCEREKpC789q0Fdz1bmiQ5P3n9OR3Ke0rvBUQTolARKSC/JS9kxsmpPHp/LX86qADeODcXrRrUjfWYSkRiIhEm7sz8ccsbv9faLqIOwZ158L+HahWLXatgHBKBCIiUbR2yy5ufiudD+esJqVDE/7528Po2KxerMP6BSUCEZEomZy+ilsmzmLrrlxuOv0QLj/6QJLipBUQTolARKScbdy2m9smzebt1JX0ateIB397GJ1bNoh1WEVSIhARKUdT5qzmxgnpZO/YzTUnd+FPxx9E9aT4XhVYiUBEpBxk78hh1NuzmfBDFoe2bsiLl/WjW5uGsQ4rIkoEIiJl9On8NdzwZjprt+7iqhMP5soTO1Ozeny3AsIpEYiI7KctO3O4+925jJu2gs4t6jPmoj70atc41mGVmhKBiMh++CpjHdeNT2NV9g7+eNxB/H1AZ2rXSIp1WPtFiUBEpBS2787l3snzeOnbZRzYrB5v/PFX9OnQJNZhlYkSgYhIhL5bvJ4R49NYsXE7lx/diWtP6UqdmonZCggXtd4MM3vOzNaYWbGrjplZXzPLNbNzoxWLiEhZ7Nidx6i3ZzP02W8BGPeHI7n1zG6VIglAdFsEzwOPAy8WVcDMkoD7gQ+jGIeIyH6bsWwD176RxpJ127j4qA5cf9oh1K1ZuW6mRHOpys/NrGMJxf4KvAn0jVYcIiL7Y2dOHv+asoBnv1hM28Z1+O8f+vOrg5rFOqyoiFlaM7O2wBDgBEpIBGY2HBgOkJycHP3gRKRK+3HFJq55/UcWrd3GBf2TufH0Q6lfq3K1AsLFsmYPA9e7e35JCzK4+xhgDEBKSopHPzQRqYp25ebxyEcLefqzRbRqWJuXLu/HMZ2bxzqsqItlIkgBxgVJoBlwupnluvvEGMYkIlXUrKxsrnk9lfmrt3BeSntuPvNQGtauEeuwKkTMEoG7d9rz2syeB95REhCRirY7N5/HP1nIE58uoln9mvznkr6ccEiLWIdVoaKWCMzsVeB4oJmZZQK3AzUA3P3paF1XRCRSs1eGWgHzftrCOUe047Yzu9GobtVoBYSL5qihYaUoe0m04hARKSgnL58npmbw+CcZNKlXk7EXpTCgW8tYhxUzlbcbXESkEHNXbeaa11OZs2ozQ3q35fazutG4bs1YhxVTSgQiUiXk5OXz9KeLePSThTSqU4Nnft+Hgd1bxTqsuKBEICKV3vyftnDtG6mkZ2Vz1mFtGHV2d5rWq9qtgHBKBCJSaeXm5fPM54t55KOFNKhdnacuOILTeraOdVhxR4lARCqlhau3cM0bqaRlZnNGz9bcMag7B9SvFeuw4pISgYhUKrl5+Yz5YjEPT1lI/drVeeL8Izijl1oBxVEiEJFKY+HqLVw7Po3UFZs4rUcr7hzcg2ZqBZRIiUBEEl5uXj7PfrGEhz5aQL2aSTw2rDdn9mpNSfOYSYgSgYgktIw1W7n2jVR+XLGJU7uHWgHNG6gVUBpKBCKSkPLynX9/uZh/friAujWTeHRYb85SK2C/KBGISMLJWLOVEeNTmbl8E6d0a8ldQ3rQokHtWIeVsJQIRCRhFGwFPDL0cM4+rI1aAWWkRCAiCUGtgOhRIhCRuKZWQPQpEYhI3FIroGIoEYhI3FEroGJFc4Wy54AzgTXu3qOQ/RcA1wMGbAH+5O6p0YpHRBJDxpqtXDc+lR/UCqgw0WwRPA88DrxYxP4lwHHuvtHMTgPGAP2jGI+IxLG8fGfsF4t5cIpaARWtxERgZo2Bi4CO4eXd/arijnP3z82sYzH7vw57+y3QrqRYRKRyylizhWvfSOPHFZsY2L0ldw3uqaeDK1AkLYLJhL6o04H8KMVxOfBeUTvNbDgwHCA5OTlKIYhIRdMcQfEhkkRQ292vjlYAZnYCoURwdFFl3H0MoVtHpKSkeLRiEZGKs3B1aNWw1MxszREUY5EkgpfM7A/AO8CuPRvdfUNZL25mvYCxwGnuvr6s5xOR+Be+alj92tV5/PzenNFTrYBYiiQR7AZGAzcDe/4ad+DAslzYzJKBCcDv3X1BWc4lIolhQdAKSMvM5vSerbhjkNYLiAeRJIJrgIPdfV1pTmxmrwLHA83MLBO4HagB4O5PA7cBBwBPBn8J5Lp7SmmuISKJIScvn2c+W8SjH2do1bA4FEkiyAC2l/bE7j6shP1XAFeU9rwikljmrtrMiPGpzMrazBm9WnPH2Vo7ON5Ekgi2AT+a2VR+2UdQ7PBREanacvLyeXLqIh6fupBGdWrw1AVHcFpPtQLiUSSJYGLwIyISkdkrsxnxRhpzVm3m7MPaMPLs7jStVzPWYUkRSkwE7v5CRQQiIolvd24+j0/N4MmpGTSuW5Nnft+Hgd1bxTosKUEkTxb/GhgJdAjKG+DuXqZRQyJSuczKyubaN1KZ99MWhvRuy+1ndaNxXbUCEkEkt4b+DfwDmAHkRTccEUk0u3LzeOzjDJ76bBEH1KvJ2ItSGNCtZazDklKIJBFku3uR0z+ISNWVumITI8ansmD1Vs45oh23ndmNRnVrxDosKaVIEsFUMxtN6OGv8FFDP0QtKhGJaztz8nj4o4WM+XwRLRrU5j+X9uWEri1iHZbsp0gSwZ6pocMf9nLgxPIPR0Ti3YxlG7lufCqL1m5jaN/23HTGoTSsrVZAIotk1NAJFRGIiMS3HbvzePDD+fz7qyW0aVSHFy/rx7Fdmsc6LCkHWqpSRPa6ZWI6r363gjx3kswY1r89dw3uyfdLNnDd+FSWrt/OBf2TufH0Q6lfS18flYU+SREBQkng5W+X732f587L3y5n2tINLFi9lXZN6vDfK/rzq4ObxTBKiQYlAhEB4NXvVhS6ff5PW7nkVx0ZMbAr9dQKqJSK/VTN7BBgENA22JQFTHL3udEOTEQqVp4XvebTyLO7V2AkUtGqFbXDzK4HxhF6kvj74MeAV83shooJT0QqSlIRC8MUtV0qj+JaBJcD3d09J3yjmf0LmA3cF83ARKTiZO/IoWOzuixau22ffcP6t49BRFKRimwREFqovk0h21sTwSL2Zvacma0xs1lF7Dcze9TMMswszcyOiCxkESlPH89dzSkPfcbS9dvp3qbh3i+FJDMuPDKZuwb3jGl8En3FtQj+DnxsZguBPb1IycDBwJURnPt54HHgxSL2nwZ0Dn76A0/x88NrIhJlG7ft5o535vDWzCwOadWAZy9KoVe7xrEOS2KgyETg7u+bWRegH7/sLJ7m7iVOPufun5tZx2KKDAJedHcHvjWzxmbW2t1XRR6+iOyP99JXcev/ZrNp+26uOqkzV55wMDWrF3eDQCqzYkcNuXs+8G3B7WZW3923lvHabfm5pQGQGWxTIhCJkrVbdnH7pFlMTv+J7m0a8uJl/ejWpmGsw5IY299BwXMI3SaqEGY2HBgOkJxcYZcVqTTcnUmpKxk5aTbbduUxYmBXhh97IDWS1AqQYhKBmV1d1C6gfjlcOwsIH47QLti2D3cfA4wBSElJKXqws4js46fsndwyMZ2P5q6hd3JjRp/bi4NbNIh1WBJHimsR3AOMBnIL2Vcef0ZMAq40s3GEOomz1T8gUn7cnTemZ3Lnu3PIycvnljMO5dJfdyKpmp4LkF8qLhH8AEx09xkFd5jZFSWd2MxeBY4HmplZJnA7UAPA3Z8GJgOnAxnAduDS0gYvIoXL3LidGyek88XCdfTv1JT7z+lFx2b1Yh2WxKniEsGlwPoi9qUUsX0vdx9Wwn4H/lLSeUQkcvn5zsvfLeP+9+YBcOfgHlzQL5lqagVIMYobPjq/4DYza+Hua9x9dXTDEpHSWrJuG9ePT+P7pRs4pnMz7v1NT9o1qRvrsCQBFNdZ3LTgJuB7M+sNmLtviGpkIhKRvHznuS+X8M8P51OzejUeOLcXv+3TDtMcQRKh4m4NrQOWFdjWllDfgQMHRisoEYnMgtVbGDE+jdQVmxhwaEvuHtKDlg1rxzosSTDFJYIRwMnACHdPBzCzJe7eqUIiE5Ei5eTl8/Sni3j0k4U0qF2DR4f15qxerdUKkP1SXB/Bg2b2GvCQma0gNOpHY/hFYmxWVjYjxqcxd9VmzjqsDSPP6sYB9WvFOixJYCVNMZEJ/NbMzgamAOp5EomRnTl5PPbJQp7+bDFN69Xkmd/3YWD3VrEOSyqBiKaYcPdJZjYFOCjK8YhIIWYs28h141NZtHYbv+3TjlvO6EajujViHZZUEhHPNeTuO4BC1xYQkejYvjuX0R/M5/mvl9KmUR1euKwfx3VpHuuwpJLRStQiceqrjHXcMCGNFRt2cNFRHbju1EOor8XjJQpK/K/KzGq5+66StolI+di8M4d73p3LuGkr6NSsHq//31H061TwsR6R8hPJnxffAAWXkSxsm4iU0UdzVnPzxHTWbtnF/x13IP8Y0IXaNZJiHZZUcsU9WdyK0ANkdfY8TRzsaohGD4mUqw3bdjPq7dn878eVWjZSKlxxLYKBwCWE1gn4V9j2LcBNUYxJpMpwd95JW8XISbPZvDOHfwzowp+OP0jLRkqFKu6BsheAF8zsHHd/swJjEqkSVm/eyc1vzeKjuas5rF0jHjj3SLq20oIxUvFK7CNw9zfN7AygO1A7bPsd0QxMpLJyd16btoK7J88lJy+fm08/lMuO1oIxEjuRjBp6mlCfwAnAWOBc4PsoxyVSKS1fv50bJqTx9aL1HHlgU+77jRaMkdiL5Ebkr9z9ImCju48CjgK6RHJyMzvVzOabWYaZ3VDI/mQzm2pmM80szcxOL134IokhL9/595dLGPjw56RlZnPPkJ7894ojlQQkLkQyfHRH8O92M2tDaNWy1iUdZGZJwBOEZjDNBKaZ2SR3nxNW7BbgdXd/ysy6EVq+smMp4heJewtXb+G6N9OYuXwTJx7SgruH9KB1ozqxDktkr0gSwTtm1pjQQvZ71iJ4NoLj+gEZ7r4YIFikfhAQngic0HBUgEbAysjCFol/OXn5PPXpIh7/JIN6tZJ4ZOjhnH1YG00VLXEnks7iO4OXb5rZO0Btd8+O4NxtgRVh7zOB/gXKjAQ+NLO/AvWAARGcVyTupWVu4rrxacz7aQtnHdaG28/qRjNNFS1xqlQTlwTTSpTn1BLDgOeDtQ+OAl4ysx7unh9eyMyGA8MBkpOTy/HyIuVj4swsRn8wn6xNO6hfqzrbdufSokEtxvy+D6doqmiJc9F8aiULaB/2vl2wLdzlwOsA7v4NoeGpzQqeyN3HuHuKu6c0b66ZFyW+TJyZxYjxqWRtCnWnbd2VC8DfTuqsJCAJIZqJYBrQ2cw6mVlNYCgwqUCZ5cBJAGZ2KKFEsDaKMYmUu5GTZpGT98vF+9xh9AfzYxSRSOlEdGvIzNoCHcLLu/vnxR3j7rlmdiXwAZAEPOfus83sDmC6u08CrgGeNbN/EOo4vsTdtRymJIyP565m047cQvdt3J5TwdGI7J9IHii7HziP0GifvGCzA8UmAgB3n0xoSGj4ttvCXs8Bfl2KeEXiwvqtuxj19hwmpWqgmyS+SFoEg4GuWn9AJDQ9xKTUlYx6ew5bduZw9cld+PcXi8neuW+roHEdLSUpiSGSRLAYqEH5jhYSSTgrN+3glomz+GTeGg5v35gHzu1Fl5YNSG5alxFvpJKT//NdzRrVjJFnd49htCKRiyQRbAd+NLOPCUsG7n5V1KISiSP5+c4r3y/n/vfmkZfv3HZmNy7+Vce9k8QN7t0WCHUOr9y0gzaN6zBiYNe920XiXSSJYBL7jvYRqRIWrd3KjW+m8/3SDRzTuRn3DOlJ+6b7rss0uHdbffFLworkyeIXguGfeyaam+/uGg4hlVpOXj5jPl/MIx8vpHb1aow+txfn9mmn6SGkUopk1NDxwAvAUkLLVbY3s4tLGj4qkqjSM7O57s005q7azOk9WzHy7O60aFC75ANFElQkt4YeBE5x9/kAZtYFeBXoE83ARCrazpw8HvpoAWO/WELTejV5+sI+nNpDTwZL5RdJIqixJwkAuPsCM9O4OKlUvlm0nhsnpLF0/XZ+l9KOm0/vRqO6+s9cqoZIEsF0MxsLvBy8vwCYHr2QRCpO9o4c7ntvLq9+v4LkpnV55Yr+/Prgfaa7EqnUIkkEfwL+AuwZLvoF8GTUIhKpIB/M/olbJ85i3dZdDD/2QP4xoAt1aibFOiyRChfJqKFdwL+CH5GEt2bLTkZOms3k9J84pFUDxl6cQq92jWMdlkjMFJkIzOx1d/+dmaUTmlvoF9y9V1QjEyln7s4bMzK5+9257Nidx4iBXRl+7IHUSIrmJLwi8a+4FsHfgn/PrIhARKJp+frt3PRWOl9mrKNvxybc+5teHNyifqzDEokLRSYCd18VvPyzu18fvi+YkfT6fY8SiS95+c5/vlrCgx8uIKmacefgHlzQL5lq1fRgmMgekXQWn8y+X/qnFbJNJK7MXbWZG95MIzUzm5MOacGdg3vQpnGdWIclEneK6yP4E/Bn4EAzSwvb1QD4KtqBieyvnTl5PPbJQp75bDGN6tTgsWG9ObNXa00PIVKE4loE/wXeA+4FbgjbvsXdN0RycjM7FXiE0AplY939vkLK/A4YSahDOtXdz48sdJF9fb9kAzdMSGPx2m2cc0Q7bjnjUJrUqxnrsETiWnF9BNlANjDMzI4Ajib0Zf0VUGIiMLMk4AlCt5YygWlmNilYlWxPmc7AjcCv3X2jmbUoS2Wk6tq8M4f735vHK98tp12TOrx0eT+O6dw81mGJJIRIJp27FfgdMCHY9B8ze8Pd7yrh0H5AhrsvDs4zDhhEaMnLPf4APOHuGwHcfU0p4xdhypzV3DpxFmu27OSKoztx9SldqFszouW4RYTIOosvBA5z950AZnYf8CNQUiJoC6wIe58J9C9Qpktwzq8I3T4a6e7vFzyRmQ0HhgMkJydHELJUBWu27GTU23N4N20Vh7RqwNO/78Ph7RvHOiyRhBNJIlgJ1AZ2Bu9rAVnleP3OwPFAO+BzM+vp7pvCC7n7GGAMQEpKyj4Pt0nV4u68MT2Tu96dw87cfK49pQv/d9xBejBMZD9FkgiygdlmNoVQH8HJwPdm9igUu2RlFtA+7H079k0gmcB3wUI3S8xsAaHEMC3yKkhVsnTdNm56K52vF62nX6em3PubnhzUXA+GiZRFJIngreBnj08jPPc0oLOZdSKUAIYCBUcETQSGEep3aEboVtHiCM8vVUhuXj5jv1zCQ1MWUDOpGvcM6cnQvu31YJhIOSg2EQQjf05x9wtKe2J3zzWzK4EPCN3/f87dZ5vZHcB0d58U7DvFzOYAecAId19f6lpIpTYrK5vr30xj9srNnNKtJXcO7kHLhloxTKS8mHvxt9zN7EvgRHffXTEhFS8lJcWnT9dyCFXBjt15PPzRAsZ+GVox7M5B3Tm1R+tYhyWSkMxshrunFLYvkltDi4GvzGwSsG3PRnfXtNQSNV9lrOPGCeks37CdYf3ac8Nph9KojlYME4mGSBLBouCnGqHpJUSiZuO23dw9eS7jZ2TSqVk9Xv3DkRx10AGxDkukUotkYZpRAGZWP3i/NdpBSdUwcWYWoz+Yz8pNO2jdqDYDurXk3bRVZO/I4S8nHMRfT+xM7RpaMUwk2iJ5srgH8BLQNHi/DrjI3WdHOTapxCbOzOLGCensyMkDYGX2Tl78ZhnJTevy8hX9ObR1wxhHKFJ1RPIEzhjganfv4O4dgGuAZ6MbllR2oz+YvzcJhMvNy1cSEKlgkSSCeu4+dc8bd/8UqBe1iKRKyNq0o9DtK7N3FrpdRKInolFDwcRzLwXvL0QPfcl+2pmTx+OfZBS5P0lrBohUuEgSwWXAKH6effTzYJtIqXy7eD03TUhn8bptRZbJK+G5FhEpf5GMGtoIXAV7nzSu5+6box2YVB7Z23O49725jJu2gvZN6/DiZf24cUJ6obeH2mopSZEKV2IfgZn918wamlk9IB2YY2Yjoh+aJDp35920VZz0r894ffoKhh97IB/8/ViO7dKcEQO7UqfA0NA6NZIYMbBrjKIVqboiuTXUzd03m9kFhJauvAGYAYyOamSS0FZu2sFt/5vFR3PX0KNtQ56/tC892jbau39w77YAe58jaNO4DiMGdt27XUQqTiSJoIaZ1QAGA4+7e46Z6UauFCov33n522U88P488ty5+fRDufTXHaleyFoBg3u31Re/SByIJBE8AywFUgktHNMBUB+B7GP+T1u4YUIaM5dv4pjOzbhnSE/aN60b67BEpASRdBY/CjwatmmZmZ0QvZAk0ezMyeOJqRk8/dki6teqzkPnHcbgw9tiGgoqkhAimWLiAOB24GhCK5R9CdwBaN0A+cWQ0N8c0ZZbzuhG03o1Yx2WiJRCJLeGxhF6duCc4P0FwGvAgGgFJfFv0/bd3Dt5Hq9NX0Fy07q8dHk/juncPNZhich+iCQRtHb3O8Pe32Vm50VycjM7FXiE0AplY939viLKnQOMB/q6u1adiWPuzjtpqxj19mw2bs/hj8cdxN9O6kydmpolVCRRRZIIPjSzocDrwftzCS0xWazg4bMnCC12nwlMM7NJ7j6nQLkGwN+A70oTuFS8zI3buXXiLKbOX0uvdo144bJ+dG/TqOQDRSSuFZkIzGwLoT4BA/4OvBzsqgZsBa4t4dz9gAx3XxycbxwwCJhToNydwP2AHlKLU3n5zvNfL+XBD+cDcOuZ3bjkVx1J0sLxIpVCkYnA3cu6GllbYEXY+0ygf3gBMzsCaO/u7xb3tLKZDQeGAyQnJ5cxLCmN2SuzuXFCOmmZ2ZzQtTl3Du5BuyYaEipSmURyawgzawJ0Bmrv2ebun5flwmZWDfgXcElJZd19DKF1EUhJSdHDbBUgfOH4JnVr8Oiw3pzVq7WGhIpUQpEMH72C0D38dsCPwJHAN8CJJRyaBbQPe98u2LZHA6AH8Gnw5dIKmGRmZ6vDOLY+W7CWWyams2LDDob2bc8Npx1C47oaEipSWUXSIvgb0Bf41t1PMLNDgHsiOG4a0NnMOhFKAEOB8/fsdPdsoNme92b2KXCtkkDsrNu6i7vemcPEH1dyYPN6jBt+JEceqIXjRSq7SBLBTnffaWaYWS13n2dmJU4R6e65ZnYloRFGScBz7j7bzO4Aprv7pDLGLuXE3Rk/I5O7J89l265crjqpM38+/iAtHC9SRUSSCDLNrDEwEZhiZhuBZZGc3N0nA5MLbLutiLLHR3JOKV9L1m3jpgnpfLN4PX07NuGeIT3p3LKs4wREJJFEMtfQkODlSDObCjQC3o9qVBJ1u3PzefaLxTzy8UJqVa/GPUN6MrRve6ppSKhIlRPRqKE93P2zaAUiFWfGsg3cOCGdBau3cnrPVow8qzstGtYu+UARqZRKlQgksW3emcMD78/jle+W07phbf59cQonHdoy1mGJSIwpEVQB7s77s37i9kmzWbd1F5f9uhNXn9yFerX08YuIEkGlF75kZPc2Dfn3xX3p2U7zA4nIz5QIKqnw+YHcKXbJSBGp2pQIKqFZWdnc9FZofqDjuzbnzkE9tGSkiBRJiaAS2b47l4emLOC5r5bSpG5NHhvWmzM1P5CIlECJoJL4ZN5qbp04m6xNOxjWL5kbTj2ERnVrxDosEUkASgQJ5paJ6bz63Qry3EkyY1DvNuzKyefd9FV0blGfN/54FH07No11mCKSQJQIEsgtE9N5+dvle9/nuTPhhyyqGVx7SheGH3sQNaurM1hESkeJIIG8+t2Kwnc4XHli54oNRkQqDf35mEDyvPA1efIrOA4RqVyUCBLElwvXFbkvSaOCRKQMdGsozq3buou7353LWzOzaFC7Olt25u5TZlj/9oUcKSISGbUI4lR+vvPatOWc9OBnvJO2kqtO6sy0mwdw4ZHJe1sASWZceGQydw3uGeNoRSSRmRdx37lcTm52KvAIoRXKxrr7fQX2Xw1cAeQCa4HL3L3YRW9SUlJ8+vTKvZplxpot3DRhFt8v3UC/Tk25Z0gPDm6hxWJEZP+Z2Qx3TylsX9RuDZlZEvAEcDKQCUwzs0nuPies2Ewgxd23m9mfgAeA86IVU7zbmZPHk1MzeOqzRdStWZ0HzunFuX3aabEYEYmqaPYR9AMy3H0xgJmNAwYBexOBu08NK/8tcGEU44lrX2es4+aJs1iybhtDerfl5jMOpVn9WrEOS0SqgGgmgrZA+MD3TKB/MeUvB94rbIeZDQeGAyQnJ5dXfHFh/dZd3D15LhN+yKLDAXV5+fL+HN25WazDEpEqJC5GDZnZhUAKcFxh+919DDAGQn0EFRha1Lg7b8zI5J7Jc9m2K5crTziYK088mNo1kmIdmohUMdFMBFlA+LjGdsG2XzCzAcDNwHHuviuK8cSNjDVbuOmtWXy/ZAN9OzbhniE96dxSncEiEhvRTATTgM5m1olQAhgKnB9ewMx6A88Ap7r7mijGEhcKdgbff05PftunvTqDRSSmopYI3D3XzK4EPiA0fPQ5d59tZncA0919EjAaqA+8EcyZv9zdz45WTLH0VcY6blFnsIjEoaj2Ebj7ZGBygW23hb0eEM3rx4P1wZPBE2Zm0VGdwSISh+Kis7gyys93Xp++gnvfm8f23bn89cSD+csJ6gwWkfijRBAFC1Zv4ea30pm2dCP9Ojbl7iE91BksInFLiaAc7czJ47FPFvLMZ4upX1tPBotIYlAi2E8Fl4w8rmszMtZsY/mG7ZxzRDtuOv0QDlBnsIgkACWC/VDYkpGfzFtLw9rVefUPR3LUQQfEMDoRkdLRNNT7oaglI7fuzFUSEJGEo0SwH7RkpIhUJro1VArbduXy8EcLityvJSNFJBEpEUTow9k/MXLSbFZm7+TgFvXJWLN1nzJaMlJEEpESQQETZ2Yx+oP5rNy0gzaN63DFMZ34etF6psxZTdeWDXjz/N706dB0n1FDw/q315KRIpKQorpUZTREc6nKiTOzGDE+lZy8X/5OaiQZ15zSlcuP7kSNJHWriEjiiclSlYlo1Nuz90kCAHVqJPHH4w6KQUQiItGnP2/DbNyeU+j2zTtzKzgSEZGKoxYBodXCJqWujHUYIiIxUeUTwZJ127h14iy+zFhHklmhzwg0rlMjBpGJiFSMKpsIduXm8dSni3jy00XUSqrGHYO6U79mda5/M42c/J+TQY1qxsizu8cwUhGR6IpqIjCzU4FHCK1QNtbd7yuwvxbwItAHWA+c5+5LyzuOgkM9TzikOYvXbmPxum2c2as1t57ZjZYNawNQrZr9YvjoiIFdGdy7bXmHJCISN6I2fNTMkoAFwMlAJqE1jIe5+5ywMn8Gern7H81sKDDE3c8r7rylHT5acIK4PerXqs4TFxzBcV2aR3wuEZFEVdzw0WiOGuoHZLj7YnffDYwDBhUoMwh4IXg9HjjJrHznaShqgrjtu3KVBEREiG4iaAuEfwtnBtsKLePuuUA2sM/0nWY23Mymm9n0tWvXlioITRAnIlK8hHiOwN3HuHuKu6c0b166v+KLmghOE8SJiIREMxFkAeGzsLULthVaxsyqA40IdRqXm6ImgtMEcSIiIdFMBNOAzmbWycxqAkOBSQXKTAIuDl6fC3zi5dx7fdfgnlx4ZPLeFkCSGRcemawJ4kREAlGddM7MTgceJjR89Dl3v9vM7gCmu/skM6sNvAT0BjYAQ919cXHnjOakcyIilVXMJp1z98nA5ALbbgt7vRP4bTRjEBGR4iVEZ7GIiESPEoGISBWnRCAiUsUpEYiIVHEJt1Slma0Flu3n4c2AdeUYTiypLvGpstSlstQDVJc9Orh7oU/kJlwiKAszm17U8KlEo7rEp8pSl8pSD1BdIqFbQyIiVZwSgYhIFVfVEsGYWAdQjlSX+FRZ6lJZ6gGqS4mqVB+BiIjsq6q1CEREpAAlAhGRKq7SJAIzO9XM5ptZhpndUMj+Wmb2WrD/OzPrGLbvxmD7fDMbWKGBF2J/62JmHc1sh5n9GPw8XeHB/zLOkupxrJn9YGa5ZnZugX0Xm9nC4OfigsdWtDLWJS/sMyk4FXuFi6AuV5vZHDNLM7OPzaxD2L5E+1yKq0vcfC4R1OOPZpYexPqlmXUL21f27y93T/gfQtNcLwIOBGoCqUC3AmX+DDwdvB4KvBa87haUrwV0Cs6TlKB16QjMivXnUYp6dAR6AS8C54ZtbwosDv5tErxukoh1CfZtjfXnUcq6nADUDV7/Key/r0T8XAqtSzx9LhHWo2HY67OB94PX5fL9VVlaBP2ADHdf7O67gXHAoAJlBgEvBK/HAyeZmQXbx7n7LndfAmQE54uVstQlnpRYD3df6u5p7LuE9EBgirtvcPeNwBTg1IoIughlqUu8iaQuU919e/D2W0KrC0Jifi5F1SWeRFKPzWFv6wF7RvmUy/dXZUkEbYEVYe8zg22FlnH3XCAbOCDCYytSWeoC0MnMZprZZ2Z2TLSDLUZZfq+J+JkUp7aZTTezb81scLlGVnqlrcvlwHv7eWy0laUuED+fS0T1MLO/mNki4AHgqtIcW5KoLkwjFW4VkOzu682sDzDRzLoX+GtCKl4Hd88yswOBT8ws3d0XxTqokpjZhUAKcFysYymrIuqSUJ+Luz8BPGFm5wO38PMyv2VWWVoEWUD4avTtgm2FljGz6kAjYH2Ex1ak/a5L0DxcD+DuMwjdL+wS9YgLV5bfayJ+JkVy96zg38XAp4SWZo2ViOpiZgOAm4Gz3X1XaY6tQGWpSzx9LqX9vY4DBu/nsYWLdUdJOXW2VCfUcdWJnztbuhco8xd+2cH6evC6O7/sbFlMbDuLy1KX5ntiJ9TxlAU0jdd6hJV9nn07i5cQ6pBsEryOST3KoS5NgFrB62bAQgp0BMZbXQh9IS4COhfYnnCfSzF1iZvPJcJ6dA57fRahdd/L7fsrJh9glH6ZpwMLgg/95mDbHYT+CgCoDbxBqDPle+DAsGNvDo6bD5yWqHUBzgFmAz8CPwBnxXk9+hK6p7mNUOtsdtixlwX1ywAuTYDPpNC6AL8C0oP/WdOByxOgLh8Bq4P/jn4EJiXw51JoXeLtc4mgHo+E/b89lbBEUR7fX5piQkSkiqssfQQiIrKflAhERKo4JQIRkSpOiUBEpIpTIhARqeKUCEREqjglAqm0zOzKYHpeN7NmRZS5xMzWmtnYCo5t634cc4OZXVBg2yVm9njw+h9mtnzPe5FIKRFIZfYVMABYVkK519z9igqIp6wGAh8WtdPdHwJuq7hwpLJQIpCEZ2b1zOxdM0s1s1lmdh6Au89096WlPNclZjbRzKaY2dKgVXF1MKPrt2bWNCj3qZk9FMxeOdfM+prZhGDBlrvCznd1ENMsM/t7EdccYWbTgsVTRhVRpiFQ093XlqY+IpHQ7KNSGZwKrHT3MwDMrFEZz9eD0Bw1tQlNpXC9u/c2s4eAi4CHg3K73T3FzP4G/A/oA2wAFgVlOwKXAv0BA74zs8/cfeaeC5nZKUBnQnPIGzDJzI51988LxDQA+LiM9RIplFoEUhmkAyeb2f1mdoy7Z5fxfFPdfUvw13c28HbYdTqGlZsUtn22u6/y0OyWiwnNCHk08Ja7b3P3rcAEoOAaEacEPzMJzQ91CKHEUNCp/HIufZFyo0QgCc/dFwBHEPpCvsvMynqffFfY6/yw9/n8shW9q5AyhZUrjgH3uvvhwc/B7v7vQsr1IzTBoEi5UyKQhGdmbYDt7v4yMJpQUogHXwCDzayumdUDhgTbwn0AXGZm9QHMrK2ZtQgvYGbdgXnunlcRQUvVoz4CqQx6AqPNLB/IIbRIOWZ2FXAd0ApIM7PJFTk6yN1/MLPn+fkv+bHh/QNBmQ/N7FDgm2DZ6a3AhcCasGKnAe9HP2KpqjQNtVRpZnYJkOLuV8Y6lqKY2RTgIndfFUHZS4jz+kj80a0hqep2AKdV9ANlpeHuJ0eYBP4B3AhojWopFbUIRESqOLUIRESqOCUCEZEqTolARKSKUyIQEani/h/b5pE+MiD47QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "product_standard = StandardCurve.from_excel(\n", " path=\"../../data/chymotrypsin_inhibition/pNA-standard.xlsx\",\n", " reactant_id=\"s1\",\n", " wavelength=410,\n", " sheet_name=\"csv\", \n", " concentration_unit=\"mmole / l\",\n", " temperature=30,\n", " temperature_unit=\"C\")\n", " \n", "product_standard.visualize()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "_Fig. 2: Fitted quadratic calibration model to standard data of p-NA._\n", "\n", "Based on the Akaike information criterion (AIC), the relation between concentration and absorption is best described by a quadratic function. The calibration measurements and the fitted calibration model are shown in Fig. 2." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Experimental data\n", "\n", "The EnzymeML documents of each experiment were loaded and the standard curve was applied to the absorption data to yield concentrations." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [ "hide_input" ] }, "outputs": [], "source": [ "# Load data from \n", "chymo_HSAwt = pe.EnzymeMLDocument.fromTemplate(\"../../data/chymotrypsin_inhibition/chymo_HSAwt.xlsx\")\n", "chymo_HSAM3 = pe.EnzymeMLDocument.fromTemplate(\"../../data/chymotrypsin_inhibition/chymo_HSA(M3).xlsx\")\n", "\n", "# Apply standard curve to 'EnzymeMLDocument'\n", "chymo_HSAwt = product_standard.apply_to_EnzymeML(chymo_HSAwt, \"s1\")\n", "chymo_HSAM3 = product_standard.apply_to_EnzymeML(chymo_HSAM3, \"s1\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Comparability of the experiments\n", "\n", "Since experimental data with HSA(WT)-huFc and HSA(M3)-huFc originate from independent experiments, the control reactions without the respective inhibitor were compared by performing a parameter estimation (Fig. 3). Thereby, catalytic efficiency $\\frac{k_{cat}}{K_{m}}$ was used to assess comparability between the data sets, since $k_{cat}$ and $K_{m}$ were highly correlated (*r2* > 0.98). High correlations between parameters indicate that the parameters cannot be determined independently with certainty. In this case, the highest initial substrate concentration is presumably too low, compared to the true $K_{m}$ of the enzyme under the given experimental conditions. However, higher substrate concentration were not applied for multiple reasons. On the one hand dimethyl sulfoxide (DMSO) was used as a co-solvent of the substrate, which inhibits enzyme activity {cite}`busby1999effect`. Hence, higher initial substrate concentrations would have led to higher enzyme inhibition, which would have distorted the assessment of $K_{i}$.\n", "On the other hand, high substrate viscosity denied the application of higher concentrations without sacrificing pipetting precision." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [ "hide_input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Kinetic parameters of HSA(wt) chymotrypsin control reactions:\n" ] }, { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 AICkcat [1/min]Km [mmole / l]kcat / Km [1/min * 1/mmole / l]Ki competitive [mmole / l]Ki uncompetitive [mmole / l]
irreversible Michaelis Menten-185756.440 +/- 4.52%2.226 +/- 7.28%25.353 +/- 8.57%--
competitive product inhibition-185660.225 +/- 9.01%2.342 +/- 9.88%25.714 +/- 13.37%0.725 +/- 112.65%-
uncompetitive product inhibition-185557.529 +/- 8.30%2.276 +/- 10.65%25.272 +/- 13.50%-3.175 +/- 428.92%
substrate inhibition-185556.585 +/- 29.14%2.233 +/- 35.51%25.339 +/- 45.93%-997.715 +/- 12275.11%
non-competitive product inhibition-185460.110 +/- 9.50%2.331 +/- 10.00%25.787 +/- 13.79%0.702 +/- 117.81%179.118 +/- 358.38%
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Kinetic parameters of HSA(M3) chymotrypsin control reactions:\n" ] }, { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 AICkcat [1/min]Km [mmole / l]kcat / Km [1/min * 1/mmole / l]Ki competitive [mmole / l]Ki uncompetitive [mmole / l]
irreversible Michaelis Menten-54948.996 +/- 2.23%1.978 +/- 3.74%24.776 +/- 4.35%--
competitive product inhibition-54951.227 +/- 4.39%2.043 +/- 4.76%25.077 +/- 6.47%0.908 +/- 81.63%-
uncompetitive product inhibition-54749.384 +/- 5.33%1.996 +/- 6.71%24.743 +/- 8.57%-7.445 +/- 631.41%
non-competitive product inhibition-54751.241 +/- 5.62%2.044 +/- 6.62%25.073 +/- 8.69%0.914 +/- 83.56%121.556 +/- 2156.85%
substrate inhibition-54550.368 +/- 3.78%2.046 +/- 5.12%24.623 +/- 6.36%-87.549 +/- 121.66%
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5IAAAGLCAYAAAC1N61oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAACxHUlEQVR4nOzdd3iUVfbA8e9NJr33AglNRKqAIHZIAnZ07RUsYHdX3V23WdbV/a3bXLurFHvva2y0BFBBBQsoWBAkCaRPkknPtPv7451JJo0UMpmU83mePEnmfeedkxByc9577rlKa40QQgghhBBCCNFdfr4OQAghhBBCCCHE4CKJpBBCCCGEEEKIHpFEUgghhBBCCCFEj0giKYQQQgghhBCiRySRFEIIIYQQQgjRI5JICiGEEEIIIYToEUkkhRBCCCGEEEL0yJBPJJVS/1NK6TZvU3wdlxBCCNFbSqnRHYxtWinlVErVKaV+Ukq9rpQ609exCiGEGJqGdCKplEoGTu3g0JL+jkUIIYToBwoIBcYB5wBvK6X+5tuQhBBCDEVKa+3rGLxGKfV74O8dHCoHRmitrf0ckhBCCHHQlFKjgZ89HtoKvIKRSI7GuGEa5DrmAJK01uZ+DFEIIcQQZ/J1AF52pcfHPwKHuj6OB84AXu/3iIQQQoi+t0Nr/W/3J0opJ3Cj61N/YDwgiaQQQog+M2RLW5VSx9OSOALcCfzg8bmUtwohhBhSlGEUcHSbQ0W+iEcIIcTQNWQTSVonijXAO8BLHo+dqJQa2b8hCSGEEF5xmVJKA05gL3CEx7EXtNZ5PolKCCHEkDUkE0mlVARwnsdDb2utG4AXPR7zAy7vz7iEEEKIfvYJcJ2vgxBCCDH0DMlEErgQo2ud2wsAWutdGA0J3K5QSqn+DEwIIYTwgq3Ara63f9NSynos8IlSKs5XgQkhhBiahmoi6VnWWgqs9fjcc1ZyLDCvPwISQgghvGiH1vrfrrdbgeMBd1v2qcCffBeaEEKIoWjIdW1VSk0G5ng8lAjYDzDxuATI9XZcQgghRH/RWu9WSpUDCa6HMnwZjxBCiKFnKM5I9rQb69lKqSivRCKEEEL4gFJqLMZWV24BvopFCCHE0DSkZiSVUoHAIo+HSul4tjEByHR9HAJcDPzXu9EJIYQQXjNZKfVb18eJGOOaZynOx/0fkhBCiKFMaa27PmuQUEqdC7zm8dCftNb3dnBeKEYjgkjXQ1u11rP7IUQhhBDioCmlRgM/d/P0vcCxWutCrwUkhBBi2Blqpa2eZa124KmOTtJa1+Pq5OoySyk1zZuBCSGEEP3EDpiBTcDtwAxJIoUQQvS1ITUjKYQQQgghhBDC+4bajKQQQgghhBBCCC+TRFIIIYQQQgghRI9IIimEEEIIIYQQokckkRRCCCGEEEII0SOSSAohhBBCCCGE6BFJJIUQQgghhBBC9IgkkkIIIYQQQgghekQSSSGEEEIIIYQQPSKJpDhoSqnLlVIf+zoOX1JKfaCUuszXcfQlpdR6pdRSX8fRllLqcaXUHb6OwxuUUp8opWb0wXU+V0pN7ouYhBjuZIyTMa4/yRjX42vep5S6ri+vKbpPEkkxZCilnlZK/dUXr621PkVr/YwvXrsjSqm7lFLP+zqOg9XRH3Ba62u11vf0YwyjlVJaKWVq83irnzel1BKl1PdKqRqlVIlS6n2lVESb58xzXev3HbzOQqBGa/1VD+Pr6Of+38DdPbmOEGJgkzGuhYxxfRqDT8Y417+hVkrd1Oa8m1yP3+X6fJJSaqtSqtL1tlYpNcnjKf8G/qSUCjzY74XoOUkkxbDR9pfkcKYMffb/f7h/b5VSc4G/ARdprSOAicArHZx6GVABLO7g2LXAc30U0jtAhlIquY+uJ4QY4Ib772FPMsb1LS+OcT92cO5lrsfdCoFzgVggHmN8e9l9UGtdBHwPnNHNL0f0IUkkRbcppdKUUm8qpcqUUmal1CNtjv/bdbfoZ6XUKa7HzlNKfdHmvF8rpf7n+vhppdRjrrKZWlfZQ7JS6gHXtb73LINQSk10laNUKaV2KKXOcD1+NXAJ8DvXdbJdj+9VSv1eKbUdqFNK3aqUeqNNPA8ppR50fbxeKXWvMkoDq5VS/1NKxbqOBSulnnd97VVKqS1KqSSP5y11fXy5Uurjjr4fPfm+KqX8lFK3K6XylFKlSqlnlVJRrmPuO4iXKaXylVLlSqnbXMdOBv4EXOD6XmzziPH/lFKfAPXAWKXUMa6vw+J6f0w3fxbuUkq97vp+VAOXK6WilFIrlVJFSqn9Sqm/KqX8XeePU0rluL6+cqXUC0qp6AN9D5RSE4HHgaNdX0eVx8+M513Sq5RSPymlKpRS7yilUj2OaaXUtUqpXa5/s0eVUsp17BCl1AbX116ulOpoUOyu2cBm951WrXWF1voZrXWNRyxhGIPhDcB4pdQsj2OBQCawwfV5sFKqQSkV7/r8NqWUXSkV6fr8Htf/kQ5/7rXWjcAXwEkH8TUJMax09rvY47iMccgYp2SMO+gxzsMWIFS5lmK43ge7Hsf1WlVa671aaw0owAEc0uY664HTDuLrE72ltZY3eevyDfAHtgH3A2EY/9GPcx27HLABV7nOuw7jDpICgjDuTk30uNZXwDmuj58GyoEjXNfMAX7GuEPlD/wVyHWdGwD8hDGAuH8p1QATPK711zZx7wW+BtKAECAFqAOiXcdNQClwhOvz9cB+YIrr63wDeN517BogGwh1xXYEEOnxvKVdfT96+H290vX1jgXCgTeB51zHRgMaWO76ug4HmtzfZ+Aud9wer7UeyAcmu77uJKASWOT6/CLX53Ftv6YO4r7L9TX+AuOGVAjwFvCE6+tIBD4HrnGdfwiwAOPnIQHYCDzQzZ+tj9u8dvO/M8bPQDkw03Xth4GNHudq4F0gGkgHyoCTXcdeAm5zxd/8mh18re7vtekAcRwPNAB/AY4Fgjq4ziKgyPX1ZgMPexybDNS1OX8jLf9PVgO7gVM8jp3V2c+96/GHgP/4+neHvMnbYHjrxu8hGeNkjJMxrm/HuLuA5zF+3v/heuyfwB9dj9/V5vwqwA44gdvbHDsb+NLXv0eG45vMSIruOhJIBW7VWtdprRu11p51/Xla6+VaawfwDMZglqS1bsIof7gUmu82jcb4xef2ltb6C23MorwFNGqtn3Vd6xXAfbf2KIzB5u9aa6vWOsd1nYu6iP0hrXWB1rpBGyUQG4HzXMdOBsq11p53lJ/TWn+rta4D7gDOd911tAFxwCFaa4cr5upOXrPD70cH5x3o+3oJRiKwR2tdi/HL9ULVusTmL66vaxvGQHV4F9+Lp7XWO7TWduBEYJfW+jmttV1r/RJGecjCLq7htllr/bbW2glEAqcCN7u+jlKMQfNCAK31T1rrNVrrJq11GfAfYG43vgdduQR4Umv9petn7Y8Yd3dHe5zzd23c0cwHcoHprsdtwCggtZuvWe6641vlunN8sfuA1vojjIFsJvAeYFZK/cd9t9rlMuAV18/Eixj/lgGuY9EYfzB62gDMdf17T8NIDOcqpYIx7g5v7CLeGtd1hRBdkzFOxri2ZIxz8dIY5/Y8cJHr3Atdn7ejtY4GooAbMW7WeJLxzkckkRTdlYYxcNg7OV7s/kBrXe/6MNz1/hngYle5xSLgVdcvRLcSj48bOvjcfZ1UoMD1S90tDxjRRewFbT5/Bteg73rftmbf8/w8jLvE8a7zVgEvK6UKlVL/9Pgl2daBvh+eDvR9TXW9vmcs7rus7V4Ho5Sno9fw5Pm1tb2++zW6+n52dK1RGN+nIo9B6AmMu7YopZKUUi+7yoGqMQaKeNdzu/rZOpBWX4PrjxFzm6+hs+/R7zBmFD5XRgnZlV28VrzWOtr9hjFQNtNaf6C1XoixjuNMjDvN7lKwNCADeMF1+v8w7hC7S3EqgVZNCzASyXkYA/c3wBqMP0yOAn7SWpu7iDcC4w6uEKJrMsbJGHega8kY1/djnPu6+Rgz03/DSPzb/jx7nluHUQ78rFIq0eOQjHc+Iomk6K4CIF31YsG51vpTwIpRGnExvW8oUgikqdYL6NMxynTAKM3oMIQ2n78NTFNKTQFOp+UXn1tam+vbMO7o2rTWf9FaTwKOcT23owXlPXGg72shxuDlGYud1n+EdKY734u213e/xn66x/NaBRhlR54DUaTW2r0Fxd9c50/VWkdi/HGjPJ7b2fegs6+jw6/BtUYjrjtfg9a6WGt9ldY6FaOk6zGlVNt1Fz2mtXZqrddhlLBNcT28COP3bbZSqhjYgzHIXuY6/pMRvvL842ATMAE4C9igtd6J8e9zKq3XmXT2PZqIcQdfCNE1GeNkjDvQtWSMa7luX41xnp4FfuN63xU/jPJrz2vJeOcjkkiK7voco/b970qpMGUsyj+2B89/FngEsPWgpKOtzzDutv1OKRWglJqHUaLi7t5VgrHW4oBc5UWvY9xt+9x1N8zTpcpoNx2KsYXC61prh1IqQyk11VXKUY0x+Do5OAf6vr4E3KKUGqOUCscYqF7p5l3NEmC0OnDXuveBQ5VSFyulTEqpC4BJtC7J6hZXOdVq4D6lVKQymiiMU0anNzDuFtYCFtdAcqvH0w/0PSgBRqrO23q/BFyhlJqulArC+B59prXe21XMymiSMdL1aSXGgN6rf0+l1JlKqQuVUjHKcCTG7OGnrlMuw1hbMt3j7RzgVKVUnNbaCqylpRTKfZf/C4zGBe7EcRNG5zvPRLLdz72r/PUIjFlMIUTXZIyTMa5TMsb1/RjXxisYpcivdvDaC5RSM5RS/spoOPcf19fzncdpc4EPevO1iYMjiaToFlfN+0KMBeX5wD7ggh5c4jmMO1e93vfJ9YtoIXAKxuLzx4DFWuvvXaesBCYpo+zk7S4u9wwwlY7vHD+Hsci8GOOO2q9cjydjDM7VGL/ANnTy/G7r4vv6pOv6GzGaMzQCv+zmpV9zvTcrpb7s5LXNGHecf4NRKvM74HStdXnPvxLAuHMdCOzE+CX/Osa6GTAGmJmABWN9xZsecRzoe5AD7ACKlVLt4tJar8VY4/MGxkA9DtealW6YDXymlKrFaCd+k9Z6Tzef21YlRuOJXRg/H88D/9Jav6CUOgrjjvKjrjvE7rd3MO7Sutc/PYFxV9fTBoxyqs89Po+g9frIjn7uFwLrtdaFvfx6hBhWZIwDZIzrioxxfT/GAaCNdbBrtdYNHRyOxkioLRhN58ZhNBRqBFBKpWDcIHi7l1+bOAhK665m1YU4eEqpEIzOcTO11rsGQDzpGIvuk7VHMwGl1HqMTnArfBWbGL6U0bb+Ru1qsX4Q1/kMWKK1/rZvIhNCHIiMcUJ0ra/GuDbXvA/YrbV+rK+uKbpvWG+wKvrVdcCWATLA+gG/Bl7WnXekE6Lfaa17Ukp3oOvM6YvrCCG6TcY4IbrQV2Ncm2v+pq+vKbpPEknhdUqpvRiLzn/h20iaF6qXYHRBO9nH4QghhBjkZIwTQgxXUtoqhBBCCCGEEKJHpNmOEEIIIYQQQogekURSCCGEEEIIIUSPDJk1kvHx8Xr06NG+DkMIIcQw8sUXX5RrrRP66/VkrBNCCNGfDjTODZlEcvTo0WzdutXXYQghhBhGlFJ5/fl6MtYJIYToTwca56S0VQghhBBCCCFEj0giKYQQQgghhBCiRySRFEIIIYQQQgjRI5JICiGEEEIIIYToEUkkhRBCCCGEEEL0iCSSQgghhBBCCCF6RBJJIYQQQgghhBA9IomkEEIIIYQQQogekURSCCGEEEIIIUSPSCIphBBCCCGEEKJHJJEUQggxbOQtWkzeosW+DkMIIYQY9CSRFEIIIYQQQgjRI5JICiGEEEIIIYToEUkkhRBCCCGEEEL0iCSSQgghhBBCCCF6RBJJIYQQQgghhBA9IomkEEIIIYQQQogekURSCCGEEEIIIUSPSCIphBBCCCGEEKJHvJpIKqVOVkr9oJT6SSn1hw6On6CU+lIpZVdKnevx+HSl1Gal1A6l1Hal1AXejFMIIcTAlbdoMXmLFvs6DCGEEEJ48FoiqZTyBx4FTgEmARcppSa1OS0fuBx4sc3j9cBirfVk4GTgAaVUtLdiFUIIIYQQQgjRfSYvXvtI4Cet9R4ApdTLwJnATvcJWuu9rmNOzydqrX/0+LhQKVUKJABVXoxXCCGEEEIIIUQ3eLO0dQRQ4PH5PtdjPaKUOhIIBHZ3cOxqpdRWpdTWsrKyXgcqhBBCDFQy1gkhhBiIBnSzHaVUCvAccIXW2tn2uNZ6mdZ6ltZ6VkJCQv8HKIQQQniZjHVCCCEGIm8mkvuBNI/PR7oe6xalVCTwHnCb1vrTPo5NCCGEEEIIIUQveTOR3AKMV0qNUUoFAhcC73Tnia7z3wKe1Vq/7sUYhRBCCCGEEEL0kNcSSa21HbgRWAV8B7yqtd6hlLpbKXUGgFJqtlJqH3Ae8IRSaofr6ecDJwCXK6W+dr1N91asQgghhBBCCCG6z5tdW9Favw+83+axOz0+3oJR8tr2ec8Dz3szNiGEEEIIIYQQvTOgm+0IIYQYnPIWLSZv0WJfhyGEEEIIL5FEUgghhBBCCCFEj3i1tFUIIYQYSLTdDlr7OgwhhBBi0JNEUgghxJDnqK2l8rnnaNi+HVNsrK/DEUIIIQY9KW0VQggxZDlq6yh//HF+yppP2YMPgdOJvayMXZlZWLKzfR2eEEIIMWjJjKQQQoghx1FbR+ULL1Dx5JM4LBaCJk7E2tCAtloBsBcWUnSH0UQ8auFCX4YqhBBCDEoyIymEEGLIcNbVUb5sObvnz6fs/vsJnn44o197FYfF0pxEuunGRkrvf8A3gQohhBCDnMxICiGEGPSc9fVUvvgi5pVP4qisJOyE40m44QZCDj8cAHtRUYfP6+xxIYQQQhyYJJJCCCEGLWd9PZUvvWQkkBUVhB13HAk33kDI9OmtzjOlpGAvLGz3fFNKSj9FKoQQQgwtkkgKIYQYdJwNDVS+9DLmlStxmM2EHXss8TfeQOiMGR2en3jLzRTdcSe6sbH5MRUcTOItN/dTxEIIIcTQIomkEEIIAPIWLQZg1HPP+jiSzjkbGqh8+RXMK1YYCeQxxxgJ5MyZB3yeu6FO0W23o61WTKmpJN5yszTaEUIIIXpJEkkhhBADnnY6MT/9NOYVK3GUlxN69FEk3PggoUcc0e1rRC1cSNWrrwEDO1kWQgghBgNJJIUQQgxYzsZGbMXF2IqLafjiC0KPOoqEB+4ndNYsX4cmhBBCDGuy/YcQQogBx9nURMVzz/Pj8SdgKygAmw3/uDiizzlbkkghhBBiAJAZSSGEEAOG02ql6rXXMC9bjr2kBPxa7nc6zGaK7rgTQNY2CiGEED4mM5JCCCF8zmm1UvnSS+w+8SRK7vkrASNH4h8XB05nq/N0YyOl9z/gmyCFEEKIAcySnc2uzCy+mziJXZlZWLKzvfp6MiMphBDCZ7TVStWbb1L+xDLsRUWEzJhB6t/+j9Cjj+b7SZM7fI69qKifoxRCCCEGNkt2dqttruyFhV6v4pFEUgghRL/TVitVb71N+ROPYy8sImT6dFL+eg9hxxyDUgoAU0oK9sLCds81paT0d7hCCCHEgFZ6/wOt9kqGlioeSSSFEEIMetpmo+rttzH/93FshYUEHz6NlL/cTdhxxzYnkG6Jt9zc6u4qgAoOJvGWm/s5aiGEEGJg66xax5tVPJJICiGE8Dpts2F55x3K//s4tn37CJ46leS7/kzY8ce3SyDd3HdQi267HW21YkpNJfGWm6XRjhBCCOGiHQ5q1qwBkwlstnbHvVnFI4mkEEIMcnmLFgMw6rlnfRxJe9pux/K/dyh//HFsBQUET5lC0u23ET53bqcJpKeohQupevU1YGB+fUIIIYQvOJuasLz9P8xPrsSWl49/fDwOi6VVMuntKh5JJIUQQvQpS3Y2Ddu2oa1Wvj98OjgcBE+aRNJjjxGeMa9bCaQQQggh2nPU1FD58stUPPssjrJygqdMIfHBB4mYn0X1++9Tev8D2IuKMKWkeL2KRxJJIYQQfabqf/+j+PY70O47og4HKjCAmMsvJyIzw7fBCSGEEIOUrbSUyueeo/Kll3HW1hJ27LHE/etfhM6Z03yDNmrhwn5d/iGJpBBCiIOmHQ6q33+foj/dBg5H62NWG2UPPED0GbK2UQghhOgJ6969mJ98Cstbb6EdDiJPPonYJUsImdzxFln9SRJJIYQQvaYdDqo/+JDyxx7DumdPp+fJ3o9CCCFE9zV8uwPzihXUrFqFCggg6pyzibviCgJHjfJ1aM0kkRRCCNFj2umkZtUqyh59FOtPuwkafwgjHrifkn/8s8OkUfZ+FEIIIQ5Ma0395s2YV6ygbtNm/MLDibvqKmIXXYopIcHX4bUjiaQQQohu004nNavXUP7oozTt2kXguHGM+M99RJx8MsrPD22zyd6PQgghRA+4t/AwL19B444dmBISSLz1t0RfcAH+4eG+Dq9TXk0klVInAw8C/sAKrfXf2xw/AXgAmAZcqLV+3ePYZcDtrk//qrV+xpuxCiGE6Jx2OqlZu5byRx+j6YcfCBw7ltR//5vIU05G+fs3nyd7PwohhBDd03YLj8BRo0i+526izjwTv8BAX4fXJa8lkkopf+BRYAGwD9iilHpHa73T47R84HLgt22eGwv8GZgFaOAL13MrvRWvEEKI9rTW1K5bR9kjj9L0/fcEjh5N6r/+SeSpp7ZKID3J3o9CCCFE5w60hUdnY+tA5M0ZySOBn7TWewCUUi8DZwLNiaTWeq/rmLPNc08C1mitK1zH1wAnAy95MV4hhBi2PPd+3JWZRcLNN+MfHkbZI4/QtPM7Akalk/qPvxN52mkok6yKEEIIIXqq3RYexxzTbguPwcSbfw2MAAo8Pt8HzDmI547oo7iEEMLn8hYtBgbGjJ0lO9tY12i1AmAvLKTo978HrQlITyfl3nuJWni6JJBCCCFEL7TdwiPipBOJW7p0QGzhcTAG9V8FSqmrgasB0tPTfRyNEEIMTqX3P9CqOQ4AWuMXHc24995FBQT4JjAByFgnhBCDVbstPM4+m7grB9YWHgfDm4nkfiDN4/ORrse6+9x5bZ67vu1JWutlwDKAWbNm6d4EKYQQw5nWGnthYYfHnBaLJJEDgIx1QggxeHS4hcfSpcQuXjQgt/A4GN5MJLcA45VSYzASwwuBi7v53FXA35RSMa7PTwT+2PchCiHE8KS1pm7TJsoffqTTc4bi3o8DoZRYCCHE0NN2Cw//hPhBsYXHwfBaIqm1tiulbsRICv2BJ7XWO5RSdwNbtdbvKKVmA28BMcBCpdRftNaTtdYVSql7MJJRgLvdjXeEEEL0ntaa+s8+o+zhR2j44gtMyclEnn02Ne+/L3s/CiGEED3U4RYed//F2MIjKMjX4XmVV9dIaq3fB95v89idHh9vwShb7ei5TwJPejM+IYQYTuo+/5zyhx6mfutWTImJJN1xO9HnnYdfYCCWo4+SvR+FEEKIbhoqW3gcjEHdbEcIIUTX6rdupezhR6j/7DP8E+JJuu02os8/r9WdUtn7UQghhOjaUNvC42BIIimEEENU/ZdfUf7Iw9Rt2ox/fDxJf/wD0RdcgF9wsK9DE0IIIQYVa14e5pVPDrktPA6GJJJCCDGIWbKzadi2DW21siszi8RbbiYwLY2yhx+h7pNP8I+NJfH3vyfmwgvwCwnxdbhCCCHEoNK8hcfq1SiTacht4XEwJJEUQohBypKdTdEdd6KtVgDshYUU/v4P4HTiHxND4q2/Jeaii/ALDfVxpEIIIcTg0eEWHkuWDMktPA6GJJJCCDFIld7/QKtOqwA4nfhFRHDI2jX4hYX5JjAhhBBiEOpwC4/f/sbYwiMiwtfhDTiSSAohRDflLVoMDJxmNPaiog4fd9bWDqkkcqB8v4UQQgxNw3kLj4MhiaQQQgwyjT/8QPkjj4DWHR43paT0c0RCCCHE4NPhFh4PPEDEgvnDZguPgyGJpBBCDBKNP/5I+aOPUbNqFX7h4YQvWEDdRx+1Km9VwcEk3nKz74IUQgghBrgOt/D45z8JPeqoYbeFx8GQRFIIIQa4pt27KX/0Uao/+BC/0FDir7+O2Msuwz8qymi4c9vtaKsVU2oqibfcTNTChb4OWQghhBhwOtzCY8lSQqYM3y08DoYkkkIIMUA17fmZ8sceo/q991AhIcRdfTWxl1+GKSam+ZyohQupevU1QNYSCiGEEB2RLTy8QxJJIYQYYKx791L+3/9iyX4XFRRE3NIlxF55ZasEUgghhBCdky08vE8SSSGE6GeW7Gwatm1DW63sysxqLke1FhRQ/th/sbzzDioggNjLLyduyZWY4uJ8HbIQQggxKMgWHv1HEkkhhOhHluxsiu64E221AmAvLKTo9juofO01Gr74EmUyEXvppcQtXTKo75hKma0QQoj+JFt49D9JJIUQoh+V3v9Aqy6rALqpiYbPtxCzaBFxVy0lIDHRR9EJIYQQg4ts4eE7kkgKIUQ/shcVdXxAKZJv+1P/BiOEEEIMUvayMiqefVa28PAhSSSFEENa3qLFwMAotbSVlOIXEoKzvr7dMVNKig8iEkIIIQaX5i083n4bbbfLFh4+JImkEEJ4mb2sjPLly6l6+RW0zQb+/uBwNB9XwcEk3nKz7wIUQgghBrh2W3icdZZs4eFjB0wklVLbu3GNMq11Vh/FI4QQQ4bdbMa8YiWVL72EttmIOvNM4q+7loavv6bottvRVium1NTmrq1i6JLxVAghek628BjYupqR9AdOPcBxBbzTd+EIIcTgZ6+spGLlSipeeBHd1ETUwoXEX39d813TwLQ0ql59DRgYJbduAymWIUjGUyGE6CbZwmNw6CqRvEZrnXegE5RS1/dhPEIIMWjZKyupeOppKp5/Ht3QQOTppxN/3XUEjR3j69CE78l4KoQQXZAtPAaXAyaSWuuPu7pAd84RQojBzpKdTcO2bWirlV2ZWa3KUR0WC+ann6by2edw1tcTecrJxF9/PUGHHOLjqMVAIeOpEEJ0rt0WHpMnyxYeg0Bv10gqQGutp/V9SEIIMbBYsrMpuuNOtNUKgL2wkKI77sTZ0Ii9tJSKp5/GWVtLxEknEX/D9QQfeqiPIxYDjYynQgjRnmzhMbh1VdrqBDTwIpANNHg9IiGEGGBK738A3djY6jHd2Ejxn/8MWhOxYD7xN9xA8GGH+ShCMQjIeCqEEC6yhcfQ0FVp63Sl1GHARRiD307X+9Vaa3s/xCeEED5nLyrq+IDWjH7jdUImy8AnDkzGUyHEcGLJzqb0/gewFxVhSklpXg4iW3gMLV3uI6m1/h74M/BnpdQFwLPAP4B/eTk2IYQYEEzJSdiLits/npoqSaToNhlPhRDDQfNyEFclj72wkKLbbqd82TKsu36SLTyGkC4TSaXUCOBC4CygErgFeMvLcQkhhM85GxqofPkVHNU17Y6p4GASb7m5/4PqgGzbMTjIeCqEGA46XA5itWLdvUe28Bhiumq2swGIAF4FrgDMrkOBSqlYrXWFl+MTQgxDeYsWA75LkJxNTVS98irly5fhKCsn9OijCJkxk4oVK9BWK6bU1FZdW4XoioynQojh4kDLQeKWLu3fYIRXdTUjOQqjOcA1wNWux9wtlDQw1ktxCSFEv3NarVS9/jrmx5/AXlpK6KxZxN93H2FHHglAw5YtgMwAil6R8VQIMaQ5auuoeuUVUAq0bnfclJLig6iEN3XVbGf0wVxcKXUy8CDgD6zQWv+9zfEgjDUiR2Dcnb1Aa71XKRUArABmumJ8Vmt978HEIoQQndFWK1VvvkX5E09gLyoiZOZMUv/5D0LnzJH246JPHOx4KoQQA5W9ooKK556j8oUXcVZXEzBuHPaCguYts2BgLQcRfafLNZJuSqlpwGjP52it3zzA+f7Ao8ACYB+wRSn1jtZ6p8dpS4BKrfUhSqkLMZoOXACcBwRpracqpUKBnUqpl7TWe7v9lQkhhj1LdjYN27ahrVZ2ZWa1K0fVNhuW//2P8sf+i62wkODDp5Hy13sIO+YYSSCF1/R0PBVCiIHItn8/5iefouqNN9BNTUTMn0/cVUsJmTat066tYmjpViKplHoSmAbswNgLC4xSnAMNfEcCP2mt97iu8TJwJkbLc7czgbtcH78OPKKMv940EKaUMgEhgBWo7k6sQggBHl3jXHdE7YWFFN1xJwCRp5yCJftdyh97DFtBAcFTppB8158JO/54SSCFV/VyPBVCiAGj8ccfqVi5Esu774FSRJ1xBnFLriRo3Ljmc6IWLpTEcRjo7ozkUVrrST289gigwOPzfcCczs7RWtuVUhYgDiOpPBMoAkKBW6QRgRCiJzrsGtfYSMn//Y3yRx7FmpdH0KSJjHzsMcIz5kkCKfpLb8ZTIYTwufqvvsK8bDm1ubmokBBiL72U2MsvI0DWPg5b3U0kNyulJrUpS/WmIwEHkArEAB8ppda6ZzfdlFJX42pakJ6e3k+hCSEGg866xjmqqjAlJTHykYcJz8qSBFL0tx6PpzLWCSF8RWtN3UcfYV62nPqtW/GPiiL+xhuJueRiTDExvg5P+Fh3E8lnMQa/YqAJo9Oc1lpPO8Bz9gNpHp+PdD3W0Tn7XGWsURhNdy4GPtRa24BSpdQnwCygVSKptV4GLAOYNWtW+/ZQQohhy5SSgr2wsN3j/jExjHnrTZSfnw+iEqLn46mMdUKI/qbtdqpXrcK8fAVN33+PKTmZpD/9kehzz8UvNNTX4YkBoruJ5EpgEfANLWs6urIFGK+UGoORMF6IkSB6ege4DNgMnAvkaK21UiofyASeU0qFAUcBD3TzdYUQw5zWmogF86l89rlWLchVcDBJf/rjgEgiZQuRYas346kQQvQLZ1MTlrfewrzySWwFBQSOHUvK3/5G1OmnoQIDfR2eGGC6m0iWaa3f6cmFXWsebwRWYWz/8aTWeodS6m5gq+t6KzGSxZ+ACoxkE4xur08ppXZg3K19Smu9vSevL4ToX3mLFgO+TZC01tSuX0/5w4/QuHMn/nFxOCwWsNsxpaZK1zgxEPR4PBVCCG9z1NRQ+fLLVDzzLI7ycoKnTSPp978jPDNzQNx8FQNTdxPJr5RSLwLZGKU4QNftyrXW7wPvt3nsTo+PGzG2+mj7vNqOHhdCiI5oran7+GPKHnqYxm++IWDkSOMO6hkLyb/iSkBmAMWA0avxVAghvMFeVkbFs89R+dJLOGtrCTv2WOL+/W9C5xwpPQREl7qbSIZgDHgnejwm7cqFED6ltab+008pe+hhGr76ClNqCsn33E30L36BCgjwdXhCdETGUyGEz1kLCjA/+SSWN95E22xEnHwScUuXEjJ5sq9DE4NItxJJrfUV3g5ECCF6ou7zzyl/6GHqt27FlJxM8l1/Jvrss2UNhxjQZDwVQvhS4/ffY16+guoPPkD5+xP1i18Qt+RKAkeP9nVoYhA6YCKplLra1S3uoM4RQojusmRn07BtG9pqZVdmVrt1jfVffknZQw9T/+mnmBISSLr9dqLPOxe/oCAfRi3Egcl4KoTwFa01DV98Qfny5dRt2IhfaCixV1xO7OLLCEhK9HV4YhDrakbyD0qp8gMcV8BNuNqSCyHEwbBkZ1N0x51oqxUAe2EhRXcYy6oD09Ioe/gR6j75BP+4OJL++AeiL7gAv+BgX4YsRHfJeCqE6Ffa6aR2/QbMy5fT8NVX+MfGknDzTcRcdBH+UVG+Dk8MAV0lkhuArlocrumjWIQQw1zp/Q+gGxtbPaYbGym6/Q50UxP+MTEk3norMRddKPtYiV6ps9XRYG8gPiS+v19axlMhRL/QNhvVH3xg7AG5axcBqakk3XE70WefjV9IiK/DE0PIARNJWcshhOhP9qKiDh/XTU0k/PrXxF5yMX5hYf0cVQvp/Do4VTVWsX7fetbmrWVz4WbOGn8Wtx91e7/GIOOpEMLbnA0NVL3xJhVPPomtsJCg8YeQ+s9/EHnKKdKATnhFd7u2CiGE15lSUrAXFrZ/PDmZ+Kuv8kFEYrAqbyhnXd461uavZUvxFhzaQWpYKhccdgGnjD7F1+EJIUSfcVgsVL70EhXPPoejooKQGTNIuuN2wufOlT0ghVdJIimEGBCadu/GlBDfLpFUwcEk/ubXPopKDCb7a/c3J49fl36NRjM6cjRXTLmC+aPm83PVz/x50595budzpISlcNPMmzht7Gm+DlsIIXrFVlJKxTPPUPXyyzjr6wmbewLxV11F6KxZvg5NDBOSSAohfMq6dy9ljz5G9bvv4hcSQlhWJvUbP0LbbJhSU9t1bRXC08+Wn1mbt5Y1eWv4ruI7ACbETOD66dczP30+46LHoZTivT3v8ZfNf8HqNBo5FdUVcdemuwAkmRRCDCrWvXsxr3wSy9tvox0OIk89lbilSwg+7DBfhyaGmW4lkkqpIOAcYLTnc7TWd3snLCHEUGctKKD8sf9ieecdVGAgcUuuJHbJEkwxMeQtWgzImkTRntaaHyp/YG3eWtbmrWW3ZTcA0+Kn8esjfk1Wehbpkentnvfglw/S6GjdyKnR0ciDXz7Yr4mkjKdCiN5q2LED8/IV1KxahQoIIOrcc4i78koC09J8HZoYpro7I/k/wAJ8ATR5LxwhRH/r76TNtn8/5Y8/TtVbb6P8/YldtIi4pUswxfd7F00xSDi1k+1l21mXv461eWvZV7sPP+XHEUlHcN6E88hKzyI5LPmA1yiuK+7R414k46kQotu01tR/9jnm5cup++QT/MLDibvqKmIXL5JxU/hcdxPJkVrrk70aiRBi0LJkZ9OwbRvaamVXZlaH5ai24mLKn3iCqtffQAExF15I3NVXEZAomyGL9uxOO1+WfMna/LWsy19HaX0pJj8Tc1LmsHTqUualzSMuJK7b10sOS6aorn1X4K4SUC+Q8VQI0SXtdFKbk0P5suU0bt+Of3w8Cb/5NTEXXoh/RISvwxMC6H4iuUkpNVVr/Y1XoxFCDDqW7GyK7rgTbTXWntkLCym6404AohYuxFZainnZcqpeeQUNRJ97DvHXXENAcv/8AS/lsYOHzWHjs+LPWJu3lpz8HCqbKgnyD+LY1GOZP3M+c9PmEhkY2atr3zTzJu7adFer8tZg/2BumnlTX4XfXTKeCiE6pa1WLO++h3nFCqx79hCQlkbyXXcRddYv8AsK8nV4QrTS3UTyOOBypdTPGKU4CtBa62lei0wIMSiU3v8AurH12jPd2Ejpv++jccdOKl96CW23E332WcRdcy2BI0f4KFIxEDXaG/mk8BPW5q1lQ8EGamw1hJpCmTtyLvNHzafWWsv/ffZ/5BTkHFSnVfdzHvzyQYrrikkOS/ZV11YZT4UQ7Tjr66l6/XXMTz2NvaiIoMMOI/W+fxN50kkok/TGFN1jbjCzcd9GNhVu4m/H/Y0Af+/uH9rdn0zZdEsI0SF7UftyQQB7SQkVzz5L1JlnEn/dtQSmt2+AIoanOlsdG/dtZE3eGj7e/zEN9gYiAyPJTM9kwagFHJV6FEH+Qby35z3u/fzePuu0etrY0wZCh1YZT4UQzeyVlVS+8CKVzz+Po6qK0FmzSLn7L4QddxxKKV+HJwaBPZY9rC9YT25+Ll+Xfd38+BclX/CbWb/x6rh3wERSKRWpta4GarwWgRBiUDOlpLTb+xFAhYQw5s03CBozxgdRiYHG0mQhtyCXtXlr2Vy4GavTSlxwHAvHLmT+qPnMSp5FgF/rO6cDpdNqX5DxVAjhyVZcTMVTT1P52mvo+nrCMzOJW7qU0JkzfB2aGOAcTgdfl33N+oL1rC9Yz97qvQCkhqViUibs2g5AWUOZ17e56mpG8kXgdIzuchqjBMdNA2O9EpUQYtCIv/Zaiu++G+z25sdUUBApd/9FkshhrryhnJz8HNbmrWVL8Rbs2k5KWArnTzifBaMWcHjC4fj7+Xf6/AHUabUvyHgqhKBpzx7MK1Ziyc4Gp5Oo008jbulSgsaP93VoYgCrt9WzqXATuQW5bNy3kaqmKqMBXfIcLpl4CfPS5rH4g8XNSaSbt2++HjCR1Fqf7novfw0KIVpx1NZR+fxzmJ98ykgi/fzA6cSUmtph11YxPBTXFbM2by1r8tbwVelXaDSjIkdx2eTLWDBqAZPiJnW7XGsAdVo9aDKeCjG8NXzzDeZly6lZuxYVFETMBRcQd8XlBIyQvgGiY6X1pc2zjp8VfYbVaSUyMJITRp7AvLR5HJt6LOGB4c3n++Lma1elrTMPdFxr/WXfhiOEGOic9fVUvvgi5hUrcVRVEZ6RQcIvb6Tk3r8D0iV1OMqvzmdN3hrW5q3lW/O3ACgUGk18SDzXTruW08ed3uPrDqBOqwdNxlMhhh+tNfWbN1O+bDn1n36KX2QkcddeQ+yiRZhiY30dnhhgtNbsqtrVvN7RPZ6ODB/JBYddQEZaBtMTp7dbBuLmi5uvXZW23neAYxrI7MNYhBADmLOxkcqXX8a8fAUOs5mwE44n4Ze/JGTqVF+HJvqZ1prdVbtZk28kjz9W/gjA5LjJnDTqJNbvW0+Towkwylv/svkvKKV6XFozgDqt9gUZT4UYJrTDQc2atZiXL6dxxw5MiYkk/u53RJ9/Pv7hYb4OTwwgNqeNL0u+NJLHglz21+4HYFr8NG6aeRPzRs5jXPS4blXy+OLma1elrRlee2UhxKDgbGqi6tXXMC9bhr2sjLBjjib+xl9KQ4BhRmvNdxXfNZet7q3ei0IxPXE6t866lfmj5pMansqJr5/YnES6HcwajQHSafWgyXgqxNDntFqpfucdzCtWYt27l8BRo0i+526izjwTv8BAX4cnBogaaw2f7P+E3IJcPtr/ETXWGoL8gzgq5SiumnoVc9PmEh8S3+Pr+uLma1elrZla6xyl1NkdHddav+mdsIQQB5K3aDFw8GWkluxsGrZtQ1ut7MrMarW2UVutVL35JuWPP4G9uJjQWbNIve/fhB155EHH3xUpjx0YnNrJ9rLtrM1by9r8teyv3Y+/8mdW8iwunXgpmemZJIQmtHrOEGuQ02dkPBVi6HLU1lH16qtUPP009tJSgidNYsQDDxCxYD7Kv/OGYmL4KKotIrcgl/UF69lSsgW7005scCxZ6VnMS5vH0SlHExoQetCv0983X7sqbZ0L5AAddc3QgAx8QgxSluxsiu64E2019uizFxYanzscYLdT/th/sRUWEjJjBql/v5fQOXNkT6thwO6082XJl6zJW0NOfg6lDaWY/EwcnXI010y7hnlp84gJjun0+UOpQU4fk/FUiCHGXlFB5fPPU/HCizgtFkKPOoqUe/9G2DHHyHg5zGmt2Vmxs7lZzvcV3wMwOnI0iyYtIiMtg2nx0w7YuXww6Kq09c+u91f0TzhCiP5Sev8D6MbWe/TpxkaKbrsdHA6Cp04l+S9/Iey4Y2VAHOJsDhsPf/UwL//wMg32BgBMysTctLnMHzWfuSPnEhEY0a1rDaUGOX1JxlMhhg7b/v2Yn3qaqtdfRzc1ETF/PnFXLSVk2jRfhyZ8yOqwsqV4C7kFueQW5FJaX4qf8mN6wnR+c8RvmJs2lzFRQ6txd1czkgAopYKAc4DRns/RWt/tnbCEEN5mL2o/awSAw8HI/z5G+Lx5kkAOYU2OJjbt38Ta/LWs2ruq3bpGk5+JBaMWDPcGOX1OxlMhBq+mXbuMPSDfew+AqDPOIG7JlQSNG+fjyISvWJosbNy3kdyCXD7Z/wn19npCTCEck3oMGWkZHD/yeGKDh26H3m4lksD/AAvGRspNXZwrhBgETMnJHSaTptQUIjKkL8hQVG+r56P9H7E2by0b922k3l5PZGAkfsqv3bnSIMdrZDwVYpCp/+orzMtXUJuTgwoJIfaSS4i9/DICUlJ8HZrwgYLqAmO94771fFnyJQ7tICEkgVPHnkpGWgZzUuYQ5B/k6zD7RXcTyZFa65O9GokQol9oranNyUF3cEwFB5N4yy39HpPwnhprDesL1rM2by2fFH5Ck6OJ2OBYTh17KgvSFzA7ZTZHPHdEh88d7g1yvETGUyEGAa01dR9/jHnZcuq3bME/Kor4G28k5pKLMcV0vk5cDD1O7eSb8m+a1zv+VPUTAONjxnPllCvJSMtgcvzkDm/KDnXdTSQ3KaWmaq2/6cnFlVInAw8C/sAKrfXf2xwPAp4FjgDMwAVa672uY9OAJ4BIwAnM1lq3XtAlhOg2rTV1GzdS9tDDNO7YQeCoUURcdCGWN95EW62YUlNbdW0Vg1dVYxW5BbmsyVvD5qLN2J12EkMSOXv82SwYtYCZiTNbLfCXBjn9qlfjqRCif2i7nepVqzAvX0HT999jSk4m6U9/JPrcc/ELPfiummJwaLQ38mnRp83Jo7nRbHQtT5rFObPPYW7aXNIi0nwdps91N5E8DrhcKfUzRimOArTWutNVxUopf+BRYAGwD9iilHpHa73T47QlQKXW+hCl1IXAP4ALlFIm4HlgkdZ6m1IqDrD19IsTQrgSyE2bKH/oYRq2bSNg5EhS/vY3os5YiDKZsP60G5AtNwar9/a817weMTIwkviQePZW78WhHYwIH8Elh13C/FHzmZYwrdO7pdIgp1/1eDwVQnifs6kJy1tvY37ySWz5+QSOHWuMlaefhpI9IIcFc4O5eb3j5sLNNDoaCQ8I57gRxzEvbR7HjTiOqKAoX4c5oHQ3kTylF9c+EvhJa70HQCn1MnAm4JlIngnc5fr4deARZXT3OBHYrrXeBqC1Nvfi9YUY9uo++5yyhx+iYesXmFJSSL77L0SfdRYqIKDPX0sS0f73wncv8O+t/8butANgsVqotlYzb+Q8rp1+LRNjJ3arYZI0yOlXvRlPhRC9ZMnOpvT+B7AXFWFKSWlXeeOoraXypZeoeOZZHOXlBE+bRtLvbiU8MxPlN/xKFYcTrTU/V//M+oL15Obnsq1sGxpNclgyvzjkF2SkZzA7aTYB/n3/N9NQ0a1EUmudB6CUSgSCu3ntEUCBx+f7gDmdnaO1tiulLEAccCiglVKrgATgZa31P7v5ukIMe/VffknZQw9T/+mnmBITSbrzDqMsR+6qDnoFNQWszVvLmrw1fFPevjpSo/m+8nsmxU3q0XWlQU7/6OV4KoToheb9kl1bXbn3SwYIO/poKp59jsqXXsJZU0PYsccS9+9/EzrnSOlYPoQ5nA6+LvvaSB4LcsmrzgNgYuxErjv8OjLSM5gQM0F+Brqpu9t/nAHcB6QCpcAo4DtgshfjOg6YDdQD65RSX2it17WJ62rgaoD09HQvhSJE38hbtBg4+Jk7S3Y2Ddu2oa1WdmVmtbq72rB9O2UPPUzdxx/jHx9vrOs4/3z8guXv1cFsj2VPc/Lo3tT4QImiNMkZuHoznspYJ0TvdLpf8p/vArsdbbMRcdJJxh6Qk731J63wtXpbPZsKN5FbkMvGfRupaqrC5GdiTvIcLp14KfPS5klPgF7qbmnrPcBRwFqt9QylVAZwaRfP2Q94rkId6Xqso3P2udZFRmE03dkHbNRalwMopd4HZgKtEkmt9TJgGcCsWbM6akIpxJDSfHfVagVa7q5a9++n8ett1K5fj390NIm3/paYiy6SxgCDlNaaHyt/ZG3+WtbsXcNui7GO9fCEw/ntrN8yf9R8RoSP4MTXT5QmOYNPj8dTGeuE6J3O9kvW9fVEn3cecUuuJHD06P4NSvSL0vrS5kY5nxV9htVpJTIwkhNGnsC8tHkcm3os4YHhvg5z0OtuImnTWpuVUn5KKT+tda5S6oEunrMFGK+UGoORMF4IXNzmnHeAy4DNwLlAjtbaXdL6O6VUKGAF5gL3dzNWIYaszu6ulj/wIH5RUSTcfDMxl16Kf3iYjyIUvaW1Zqd5J2vy1rAmbw35Nfn4KT9mJs7kDxP+wPz0+SSFJbV6jjTJGZR6M54KIXrBlJKCvbCw/eNJSaTcc7cPIhLeorVmV9UucvNzWV+wnm/N3wIwMnwkFxx2ARlpGUxPnE6An6x37EvdTSSrlFLhwEfAC0qpUqDuQE9wrXm8EViFsf3Hk1rrHUqpu4GtWut3gJXAc0qpn4AKjGQTrXWlUuo/GMmoBt7XWr/Xi69PiCGls7urAIesXYN/REQ/RiN6670973HnJ3didVqJC45jYuxE9lj2UFhXiL/y58jkI7l8yuVkpmUSFxLX6XWkSc6g1OPxVAjRM+7trjrqtqqCg0n87W98EJXoazanjS9LviS3wEge99cahY/T4qfxqxm/IiMtg3HR42S9oxd1N5E8E2gEbgYuwShB7fJWjtb6feD9No/d6fFxI3BeJ899HmMLECGEiykhAXtpafvHU1MliRwksn/K5q7Nd2F1GuXJ5kYzHxd+zISYCdwz/R4y0jJ61F5cmuQMOr0aT4UQXdMOB9UfftiyB2RKCpFnnEH9li3Yi4s77NoqBpcaaw2f7P+E3IJcPtr/ETXWGoL8gzgq5SiWTl3K3JFzSQhN8HWYw0Z3u7bWKaWSMJrfmIEPZEsOIfqPdd8+yh/7L/aysnbHVHAwibfc3P9BiW6zOW1sKd7C2ry1vPHjGzhxtjun2lrNLw75Rf8HJ/qVjKdC9D2n1WrsAblyZcsekPfea+wB6YXtrkT/KqwtbF7vuKVkC3anndjgWLLSs5iXNo+jU44mNEB6QvhCd7u2ng/8C1iPsXnyw0qpW7XWr3sxNiGGPVtREeWPP0HVG2+g/PyIXbyIgPRRlP7jH2irFVNq6kHfXZX9H73D5rCxuWgza/PWklOQg6XJQogppMMkEqTT6nAh46kQfcdRW0fVq69S8dRT2MvKCJ46lcSHHyIiK0v2gBzEtNbsrNjZnDy6u5WPjhzNokmLyEjLYFr8NPz9/H0ap+h+aettwGytdSmAUioBWAvIwCeEF9hKSzE/sYyqV19FAzHnn0fcNdcQkGQ0W6n58ENAksCBptHeyKbCTazJW8OGgg3U2GoIDwhnXto8FoxawDGpx3DG22dIp9XhTcZTIQ6SvbKSyueep+KFF3BaLIQefRSp//g7oUcfLevhBimrw8qW4i3kFuSSW5BLaX0pfsqP6QnT+c0Rv2Fu2lzGRI3xdZiije4mkn7uQc/FDMitHiG66UB7P3qym82Yl6+g8qWX0HY70WefRfy11xIwYoQPohae3tvzXodNbept9Xy8/2PW5K1h476N1NvriQyMJGtUFgtGLeColKMI9G9p+CCdVoc9GU+F6CVbURHmp56i6rXX0Q0NhM/PIv7qqwmZNs3XoYlesDRZ2LhvI7kFuXyy/xPq7fWEmEI4JvUYMtIyOH7k8cQGx/o6THEA3U0kP3RtyfGS6/MLaNNERwjRsc72fgSak0l7ZSUVTz5FxQsvoBsbiTrjDOKvv45A2Xx8QHhvz3utkr+iuiLu+OQOntvxHLstu2l0NBIbHMupY09lwagFzE6e3WmLcem0OuzJeCpEDzXt+RnzihVYsrNBa6JOO424q5YSdMghvg5N9FBBdUHzrONXpV/h0A4SQhI4deypZKRlMCdlDkH+Qb4OU3RTl4mkMmoEHsJoDHCc6+FlWuu3vBmYEENFZ3s/lt7/AOFz51Lx9NNUPPMszvp6Ik89lfgbbiBorJRvDCQPfvlgqxlEMBrofFf5Hecfej4njj6RmYkzu71eQzqtDk8yngrRMw3f7sC8fDk1q1ejAgOJOf984q68Qqp0BhGndvJN+TesL1hPbn4uuy27ARgfM54rp1xJRloGk+Mn46ekMGMw6jKR1FprpdT7WuupwJv9EJMQA0beosXAwa1F7GzvR3thIT/NX4CzupqIE08k/sYbCD700F6/juh7lY2V5BbkdrimEYyGALcddVs/RyUGKxlPheia1pr6z7dgXraMuk8+wS8igrirryZ28SJMcZ3vqysGjiZHEw9/+TCv/vgqDfYGABSK2cmzOffQc5mbNpe0iDQfRyn6QndLW79USs3WWm/xajRCDEGmlBTshYUdHgudNYuEX95I8MSJ/RyV6Ex5Qzk5+TmszlvN1uKtOLQDf+WPQzvanSsNckQvyHgqRAe000nt+vWYn1hGw7Zt+MfHk/CbXxNz0UX4h4f7OjzRharGKjbu30hufi4bCjZg07ZWxwP9Azl7/NlSjTPEdDeRnANcopTKA+owWpZrrbWsbhaiC4m33GyskfQsb/XzI/7GG0i4/nrfBSaaldSVsDZ/LWvy1vBlyZdoNKMjR3PllCtZMGoBu6t285fNf5EGOaIvyHgqhAdts1H9/vuYV6ygaddPBIwcSfKf7yTq7LPxC5K1cgPZvpp9zesdvyz5Eod2kBiSSIB/ADZ760SyydHEg18+KInkENPdRPIkr0YhxBDltFpxVFdDQAC4Ekn/+HiSfv+7g9r7UXRPZ51WwdjgeE3eGtbmreXrsq8BOCT6EK49/FoWjFrAIdGHNLeRnxg3EaWUNMgRfUHGUyEAZ2MjVW++ScXKJ7Ht30/Q+PGk/uufRJ5yCsrU3T9PRX9y7++Ym59LTkEOuyp3AcbYeeWUK8lMz2RS3CSmPzu9w+fLfslDT3f/p/5Va73I8wGl1HPAok7OF2JY0zYbVW+9Rfnjj2MvLCLkiCNw1tbiHxnZJ3s/yv6RXeuo0+qfN/2Z9fnr2Ve7j2/N3wJwWOxh/HLGL5k/aj5jo8Z2ej1pkCP6iIynYlhz1NRQ+dLLVDzzDA6zmZDp00m67TbC581F+UnDlYHG5rCxpWQLufnGzGNJfQl+yo8ZiTP47azfkpmWSVpk6/WOyWHJsl/yMNHdRHKy5ydKKX/giL4PR4jBTdvtWLLfpfyxx7AVFBB8+DRS7rmHsGOOIX/xZb4Ob1jpqNNqk6OJD/M+ZErcFG454hYWpC9oNwAK4WUynophyW42U/HMs1S++CLO2lrCjjuOuKuvInT27ObqDzEw1Fpr+Xj/x+QU5PDxvo+psdUQ7B/MManHcOOMG5k7ci4xwTGdPl/2Sx4+DphIKqX+CPwJCFFKVbsfBqzAMi/HJsSgoR0Oqj/4kPJHHsG6dy9BkyYy8vH/Ej53rgyQ/UxrzU9VP3XaaVWheOn0lzo8JoS3yHgqhivrvv1UPPkkVW+8gbZaiTjpJOKuWkrI5MldP1n0m+K6YmOLjoJcPi/+HLvTTmxwLPNHzScjLYOjUo8ixBTSrWvJfsnDxwETSa31vcC9Sql7tdZ/7KeYhBg0tNNJzZq1lD/yME27fiJo/HhGPPwQEfPnSwLZj7TW/FD5A6v3rmZN3hr2Vu/t9FwprRG+IOOpGG6adu3CvGIFlnffAz8/os48g7glSwgaI/skDwRaa3ZV7WouWd1h3gHAqMhRXDrxUjLTM5kWP63b+yO3JctBhoeuZiQP01p/D7ymlJrZ9rjW+kuvRSaEj1mys2nYtg1ttbIrM4vEW25ubpCjtaY2dz1lDz9M03ffETh2LCP+cx8RJ58sazz6idaaneadrM4zkseCmgL8lB+zk2Zz6cRL0Wju23qflNaIAUHGUzFcNGzbRvmy5dSuW4cKDSX20kuJveJyApLlJp6v2Z12vir9yui0mp/Lvtp9AEyLn8ZNM28iMy2TMVFj5Ea46Lau1kj+GrgauK+DYxrI7POIhBgALNnZxpYdVisA9sJC43MNppgYyh5+mMbt2wlITyf1H38n8vTTUf69u2snWjtQp1WndvJN+Tes2buGNXlrKKwrxKRMzEmZ09wxLjY4tvlaEYERUlojBgoZT8WQpbWmbtMmzMuWU//ZZ/hFRRF/ww3EXHoJppjO19IJ76u31bO5cDM5BTls3LeRqqYqAvwCjHFz6pXMGzmPhNAEX4cpBimltfZ1DH1i1qxZeuvWrb4OQwwRuzKzsBcWtntcBQSgbTYCUlOJv/46os48ExUQ0K1r5i1aDEjH1QNp22kVjFnEyyZfRp2tjjV5ayipL8HkZ+KY1GNYMGoBGWkZRAVF+TBqMZwppb7QWs/qr9eTsU4MJO7lHeZly2jcsQNTYiKxV1xBzPnn4RcW5uvwhi1zg5kN+zaQm5/L5qLNNDmaiAiMYO7IuWSkZXDsiGMJC5B/H9E9Bxrnur1Rj1LqGGC053O01vIXsRhw+iJhsxd13KhF22wk//lOos85BxUY2Ovri4511Gm10dHIE9ufINAvkGNHHMtNM29ibtpcIgMjfRSlEAdHxlMx2GmrFUv2u5hXrMD6888EjEon+Z67iTrzTPxkbPSJvZa95BbkkpOfw7aybWg0qWGpnHvouWSkZTAzaSYBft278S1Ed3UrkXTtcTUO+BpwuB7WgAx8YkgypaR0OCNpSkkh5qKLenVNmYk8MLvT3mmnVYCNF26UO6hi0JPxVAxmzvp6ql5/HfOTT2EvLiZo4kRG3P8fIk48UZZ39DP3Uo+c/BxyC3L52fIzABNjJ3Ld4deRkZ7BhJgJst5ReFV3ZyRnAZP0UKmDFeIAGr/7Dv+oqHaJpAoOJvHXt/goqqHJ5rTxedHnrMlbw7r8dZ2elxKWIkmkGCpkPBWDjsNioeKFF6h89jkcVVWEzppFyj13E3bccZKo9KMmRxOfFX1GTn4OG/ZtoLyhHJMycUTyEVww4QIy0jJIDU/1dZhiGOluIvktkAx0Pl0gxCDXtGsXZQ8/Qs3q1fhFRhJx8knUrstB22yYUlNbdW0VvWd1WPm06FNW711NbkEu1dZqwgLCmJc2j5igGF7/8XXptCqGMhlPxaBhKyml4plnqHr5ZZz19YTPm0fc1VcTOnOGr0MbNixNFjbu20huQS4f7/+YBnsDoaZQjhtxHBnpGRw/4njpEyB8pruJZDywUyn1OdDkflBrfYZXohKiHzX9/DPljz5G9Xvv4RcaSvz11xF7+eX4R0ZKg5xuOlCnVTDuom7av4k1eWtYX7CeGlsNEQERZKRnsGDUAo5OPZog/yAApsRPkU6rYiiT8VQMeNb8fMwrVmJ56y20w0HkqacSd9VVBE841NehDQv7a/c37+/4RckXOLSDhJAETh97OpnpmRyZfCSB/rIWVfhedxPJu7wZhBC+YN23j/JHH8Pyv/+hgoKIW7qE2CuvlFblPdS202pRXRF3bboLq8NKZGAkq/JWsaFgA/X2eqKCopg/aj4LRi3gqJSjCPBvv/BfNjEWQ9xdvg5AiM40fv895mXLqf7wQ5TJRNQ5ZxO3ZAmBaWm+Dm1I01rzXcV3zfs7/lD5AwDjosZx5ZQryUjLYHL8ZPyU7FMtBpZuJZJa6w3uj5VSp2ut3/VeSEJ4l62oiPL/Pk7Vm2+i/PyIXbSIuKuWYoqP93Vog1JnnVb/vOnPaDQxQTGcMuYUThx1IrNTZkvXODGsyXgqBqL6L76gfNky6jZsxC8sjLgrryBm8WICEhN9HdqQZXPa2Fq81UgeC3IprivGT/kxPWE6v531WzLSMkiPTPd1mEIcULe3//BwNyADnxiQLNnZNGzbhrZa2ZWZ1Wpdo620FPOy5VS98goaiDn/POKuuYaApCTfBj3IFdcVd/i4RrPixBUckXQEJr/e/KoRYsiT8VT4jNaauo0bKV+2nIYvvsA/JoaEm28i5uKL8Y+U7ZW8odZay8eFH5OTn8PH+z6mxlZDsH8wR6cezfWHX8/ctLnEBsf6OkwxmG1/FdbdDZZ9EDUSsu6Eaed77eV689edtOcSA5IlO5uiO+5EW60A2AsLKbrjThy1ddjy86l86SW0zUb02WcRf+21BIwY4eOIB68aaw0b9m1g9d7VaDpuPpkSlsKclDn9HJkQnbA1Qtl38MZS8A+G6z/xdUQg46nwAW23U71qFeblK2j6/ntMqSkk3XYb0eeeg19IiK/DG3JK6kpYX7Ce3IJcPiv+DLvTTkxQDFmjsshIy+Do1KMJMcn3XfSB7a9C9q/A1mB8bikwPgevJZO9SSSv6fMohOgDpfc/gG5sXWKpGxspuftuUIqohQuJv+F6AtOlVKQ3qq3VrC9Yz+q9q9lUuAmb00ZiaCLHph7LluItWJ3W5nOl06rwqTozlHwDxR5vZT+Adm3bGDZgyvVkPBX9xmm1YnnrbcwrV2LLzydw3DhS7r2XqNNPQwXIkoO+orXmp6qfmtc7fmv+FoD0iHQuOewSMtIzmJ4wHX8/2XdT9LF1d7ckkW62BuPxAZRI3ggs7utAhDhY9qJOuulrzdj33iVo7NgeX3Ood2vtqtuqpclCTn4Oq/NW82nRp9iddlLCUrjosItYMGoB0xKm4af8uryOEF7hdELlz60TxuJvoMZjD9iIVEieChNOhaYa+OIpqCuF+6d4veSnG2Q8FV7nqK2j6pVXqHj6aexlZQRPnUriww8RkZWF8pPmLX3B4XTwVelXzesdC2oKAJgaP5VfzfgVmemZjI0aK3tuir7nsEH5LijZYcxAdsSyz2svf8BEUin1TtuHgAylVDR03a5cKXUy8CDgD6zQWv+9zfEg4FngCMAMXKC13utxPB3YCdyltf53N74eMUj1xTYbpqQk7MXt1+uZUlN7lUQOdZ11W62z1eGv/Fmdt5rPiz7Hru2MCB/BpRMv5cRRJzIlfkq7wVA6rQqveuo0cDrg5P9rnTCW7ABrrXGO8oeECTDmeCNxTJ4KSVMhLM447i75cbhmzvuh5MfTwY6nQvSUvbKSyueeo+KFF3FaLIQefRSp//wHoUcdJQlNH2iwN7CpcBO5+bls2LeBqqYqAvwCODLlSC6ffDnz0uaRGDpgqh/EUFBbCiXfGmNfyQ4o/hbKf2gZ1zoTNdJrIXU1IzkSI5FbAWiMgW8WcF9XF1ZK+QOPAguAfcAWpdQ7WuudHqctASq11ocopS4E/gFc4HH8P8AH3fxaxDDlbGyk8qWXcdTUtDumgoNJvOXm/g9qEOis2+o9n94DwMjwkSyevJgTR5/IpNhJ8oeH6D915VC8vSVhLPwSbPWwPNM4HhhhJIrTL25JGhMmQkBw59f0QclPG70eT4XoCVtREeannqLqtdfRDQ1ELJhP3NVXEzJ1qq9DG/TMDWY27ttITkEOmws30+RoIiIgguNHHk9meibHph5LeGC4r8MUg529yViOUbLDlTi6kse6spZzIlIgaTIckmncNE2aDEXb4L1bWo91ASFG9Y2XdJVIzgJuAm4DbtVaf62UavBsX34ARwI/aa33ACilXgbOxBhI3c6kZU+t14FHlFJKa62VUr8AfgbquvvFiOHFabVS9dprmB9/AntZGaFHH0XIzJlULF+Btloxpaa26toqWuus2yrAq6e/ymGxh0nyKLyruTR1e5vSVI8y9eAYsLtueITGwfG/gTnXQU9L8jor7fFiyU8bBzOeCtGlpj0/Y16xAkt2NmhN1OmnE3fVUoLGjfN1aINaXnUeufm55BTk8HXp12g0yWHJnDP+HDLSMzgi6QjZ1kr0jtbGeFeyo6XKpmQHlP/YsqbfFAwJh8H4kyB5ipEwJk5uqbbxlDQJ/PwHTtdWrbUTuF8p9ZrrfUlXz/EwAvAs1t0HtG3h2HyO1tqulLIAcUqpRuD3GLOZv+3m64lhQttsVL39NuX//S/2wiJCZh1B6n3/JuzIIwFo+HwLMPTXN/ZGaX0pa/PWsjrvwN1WJ8ZN7OfIxJBna4DSnV2Uph4GY+a2zDJW7IZVfwLtNM6pN0POPRCW0POBMWpkx+tHvFjy4+kgx1MhOtXw7Q7My5ZRs2YNKiiImAsuIO6Ky6UzeS85tZNvy78lJz+H3IJc9lj2AHBY7GFce/i1ZKRlyI1W0XPWeij7vnVpasm30FDZck5UupEoHnaa8T5pCsSOBf8eDBXTzu/Xtf/dikxrvQ84Tyl1GlDt3ZAAY5byfq117YH+oyqlrgauBkiXTpxDnnY4qH73XcoefQxbfj7B06aRcvc9hB17jPxCP4CSuhLW5q9l9d7VfFX6FRrNuKhxZKVl8XHhxzQ5mprPlW6rok/UmeGZM4wkMe1II2n0vMPaXJp6iUdp6mHtS1P/d0PflaNm3dm6LTp4veSnI70ZT2WsE21pran/7HPMy5ZRt2kTfhERxF1zNbGLFmGK62CmQhxQk6OJz4o+I7cglw0FGyhrKMNf+TMraRbnTzifeWnzGBEuibnoBq2hKr91sliyw7gx6r4pGhBmzB5OOtNIFpMmQ+IkCIn2aei90aO7oVrr94D3unn6fiDN4/ORrsc6OmefUsoERGE03ZkDnKuU+icQDTiVUo1a60faxLMMWAYwa9asjqdXxKCnnU5qPvyQskcexbpnD0ETJzLyv48RPm/esEwgu9MhtbiumDV5a1i9dzVfl30NwCHRh3Dd9Os4cdSJjIse1+1rCdEppxOq9rbMMBZtb9811VJgDJLH/6YlaYwe1b3S1L4sR3Unnv+7ERxNEJXm066tPRlPZawTbtrppDY3l/Jly2jcth3/+HgSf/sboi+8EP9wWZvXE5YmCxv3bSS3IJdP9n9Cvb2eUFMox444loy0DE4YeQJRQVG+DlMMZE01UPpdm1nGHdDkcY8wZowxBk45x3ifPAWiR/d8ecYA5c2ymi3AeKXUGIyE8ULg4jbnvANcBmwGzgVytNYaON59glLqLqC2bRIphg5LdjYN27ahrVZ2ZWY1r2vUWlObk0PZQw/T9MMPBI0/hBEPPkjEgvnDtmV5Z51WAWYkzjCSx7zVbC/bDsCEmAncOP1GFoxewNio9p1rpduq6DZ7kzFgFn/jsabxW7C6mly5u6ZGpxsNAZw243HtAPMuiP8lTOphY9K+Lkeddj588Yzx8RXdvScqhO9pm43q99/HvGIFTbt+ImDkSJLv+jNRZ52FX1CQr8MbNAprC5v3d9xashWHdhAfEs+pY08lIy2DOSlzCPKX76dow72ev9Us47dQubflnKBII1Gcdr5rlnEKJB4GQRE+C7s/eC2RdK15vBFYhbH9x5Na6x1KqbuBrVrrd4CVwHNKqZ+ACoxkUwwjluxsiu64E201WhfbCwspuuNOGr//nvrPPqfx228JHDWK1H/9i8hTT0H5D+8NfDvrtHrHJ3dgc/3hPjF2IjfNvIn56fMZHTXaB1GKQesp102FC54zBskijyY45T+A024cDww3BsnDL4SUaa27pt4/pSWJdBtI5aiSQIpBxNnYSNUbb1Cx8klshYUEHXqoMR6ecjLKJEtsu6K1ZsU3K3jy2yeptdU2Pz42aiyXT76czPRMpsRPwU8Nz5vTogMNVcZ6fs8GOKXfgc3V+1P5Qew4SJ0BMy5tKU2NSoNhWCXn1d9CWuv3gffbPHanx8eNwHldXOMurwQnBoTS+x9AN7ZOjHRjIxUrnyRgxAhS/vY3os5YKAOmS2edVm1OGzfPvJkFoxaQHilrqEQ3uddyFH8D216G/E3GGo5/jmk5JyLFSBQnnNJSmhozpvOynCFcjipEf3HU1FD54ktUPPssDrOZkBkzSLrj9mG7pKMn7E47X5V+RU5+Du/ueZeqpqpWx4P8g7h62tVSjTPcOexQsQdKvmldlupZBRMSYySKMxe7mt9MNtbzB4b6Lu4BRv46Fz5lLyrq9Ni4D95HBQb2+JpDsVtrfnU+q/NW4+/nj909K+QhJSyFJVOX+CAyMWg4bMa+VK1KU7dDo6Xj8/2D4KR74cge/lxJOaoQvWYvL6fimWepfOklnLW1hB1/PPFXX0XIrFmSQB5Ao72RzYWbWZe/jg37NlDVVEWgX2CH37MmRxMPfvmgJJLDSZ25fbfUsu9btpbyM0H8oZB+FCQtaZlljEgZlrOMPSGJpPAp/7g4HOXl7R43pab2KokcSvKq81i9dzWr81bzfcX3AKSFp1FUX9QqmZROq6Kdphpj/WLxN1C8zXhf+h04jBJyTCHGIDn5bKM0df29UFva+hqOJvjk/p4nklKOKkSPWfftp+LJlVS98SbaaiXi5JOIv+oqgidN8nVoA1ZVYxUb928kJz+HTYWbaLA3EBEQwQlpJ5CZlsmxI47l6BeP7vC5B9pHWQxidquxJt+zW2rJjtZ7E4clGuPf7KVGwpg8xUgiTbI2tjckkRQ+0fj995Q99HCHSaQKDibxlpv7Pygv6m531J8tPzcnjz9W/gjAtIRp/HbWbzlx1ImkhKdIp1XRQmuoLYHnzgJrHaRON5LGij0t54TGQfI0OOo6433yVIg7xNi02O3dX3d8fSlHFaLPWLKzKb3/AexFRZhSUki85WaCDzuM8uXLqX7vffDzI/oXZxK3ZAmBo0f7OtwBqai2iJyCHHLyc/ii5Asc2kFiaCJnjDuDrPQsZiXNIsA/oPn85LBkiuraVz4lhyX3Z9iir2lt3Pxs2y217PuWNfr+gUYDuLHzWmYYkyZDeKJPQx9qJJEUByVv0WKg++WkTbt3U/bII9R88CF+EREk3PQr/OMTKLnnHrTViik1tblr61BxoE6rp409jT1Ve1idZySPuyp3ATA9YTq/m/07Foxa0G7Ak06rw5TTaexDVbzdownOdqNDqlv1Pkg+HDJvb0kau1OaI+WoQnhVc2M5V08Ae2Ehhb//AzidqNBQYhctIvaKywlISvJxpAOL1ppdVbvIyTeSx+8qvgNgXNQ4rpxyJZnpmUyKm9Rps5ybZt7UavwFqeIZdGyNRrM3d7LoboBT7zEREZFqzCyOn9+SNMYdAh43FYR3SCIp+oU1L4/yxx7Dkv0ufsHBxF13LXGXX45/lLFHU/U77wBDc31jZ51W//rpX1nxzQp+qvoJMLbv+P3s3zN/1Hy5Wzrc2RqNrnHutYxF242B0901zi/AaCsed6jRYc59B9bpgLLvjNnHQ0/q/utJOaoQXtVRYzmcTvwiIhi3ehWmmBjfBDYAOZwOvi77ujl53Fe7D4ViWsI0bjniFjLTMrvdkdx901WqeHxg+6tGt27LPuOmZFeVKVpDdWHr7TVKdkD5LmMbKTCWZSRONJq/ec4yhsb2z9ck2pFEUniVbf9+yh9/nKo330IFBBB7xeXELV06rAbNztZi1NpqiQyM5A9H/oH56fNJCpM70cOKe6uNC59vSRbds4xlP7QMnEGRxszizEUts4wJh4EpsO+22pByVCG8Rjud2AsLOzzmrK0dVuNhZ5ocTXxa+Ck5BTmsL1hPRWMFAX4BzEmZw5VTr2TeyHkkhCb06tpSxeMD219tfXPSUmB8Dsa4Yq03bnoWt2mA01jVco3odCNZnLjQlTBOgdixrZdlCJ+TRFJ4ha2kFPMTT1D52msoIObii4m/+ipMCb0bCAYjd0lOWEBYq/2r3BJDE3nmlGd8EJnwCa2NO7PF38C2l1q22vjH6JZzIlKMZHHCqa79GadB9Kj+22pDylGF6DPaZsPy7nuYV6zo9BxTSko/RjSwWJosbNy3kdyCXD7e/zEN9gbCAsI4YcQJZI7K5LjU4wgPDPd1mKI31t3dusIFjM/f+RVs+AeYdwPaeDwwHBInweSzjIQxeaox6xgc1e9hi56TRFL0miU7m4Zt29BWK7sys0i85WbCjjkG8/IVVL70EtrhIPqcc4i/9hoChslgqbXmx8ofjTWPe1ezt3ovAH744cTZfF6wfzC/PqKTBidi8HM6jHKc4u2t1zQ2VHR8/kDZakMSSCEOmrOxkao33sC8ciX2wiKCJkwg+pKLsbzxZqvy1qHYWK4rxXXF5BbkkpOfw9birdi1nYSQBBaOXUhmeiazk2cT6D+8O7YPWtZ6Y0lGybcdj0sA9gYjSZx6fktZ6oFulooBTxJJ0SvNjQOsxnYC9sJCCv/4J6Oph8NB1JlnEn/9dQSmpXXreoN5baQ7eVy1dxVr8tawt3ovfsqPWUmzuHTipWSNyuKzos9kjcZQ5R48mxPG7VCy0xgwwUgSkyYZ5TnJU2HDP6FuAG+1IYToFUdNDZUvvUzFM8/gMJsJmTGD5DvvJHzuXJRShE6f3q5r61BqLNcRrTV7LHtYl7+OnPwcdph3ADA6cjSLJy8mKz2LKfFTOm2WIwYgraF6v6ss9RvX+29bzzKiPD72EJUGFzzfj8EKb1Nad/APPQjNmjVLb9261ddhDBu7MrM6XPOhQkIY88YbBI0d44Oo+taBttnoLHmcnTSbE0efSGZ6JvEh8T7+CkSf2v4q/O8GYy/G4CiInwBN1VD+o1GiCsbjya6SVHdpavz41p3j7oqmwwEWBXdV9TIuWdvoK0qpL7TWs/rr9WSsG3jsFRVUPPsslS+8iLOmhrDjjiP+mqsJmTULNQw3M3dqJ9vLthvNcgpyyKvOA2Ba/DQy0jPITM9kbNRYH0cpusXW6LGW8duWrqmeaxljRrv2Y5zasi9jwecd3+Rc+JCMT4PQgcY5mZEUvWIvar8vE4BubBwySWRHW3YU1hbSYG9gdd5q8qrzjOQxeTaLJi0iKz2LuJA4H0cu+kTzekbXLOMPHxgfuxPARgvs22IMnCfcarxPnmY0B/DFVhsyMAvR72xFRZiffIqq115DNzURceKJxF11FSFTJvs6tH5ndVj5tOhTcvKNZjnmRjMmZeLIlCNZNHERGekZJIbK/n0DlntP4razjJ4dUwPCjOqaVmsZJ0FwZPvrxYw23veka6sYlCSRFD3ibGqi6uWXjT+WO5jNHiqNAzrbsuOhrx7CX/kzO3k2l02+jKz0LGKDpe30oOa5nrFoW8uWGw2VrhOUq0tc2593bZyT8aeevZ6UowoxqDX9/DPmFSuwvJMNWhO1cCFxVy0laOzwmmWrsdbw0b6PyCnI4aN9H1FvryfUFMrxI48nMy2T40YeR2RgB0mG8C271diX0Z0sdrQvY1SaR8dU12xjzJierWWUm5zDgiSSolu01UrVG29Q/t/HsZeWEnDIOOz5Bc1rJGHoNA7QWne6ZQdA7vm5xARLu/ZBydZgrF/0bIJTsqOD9YxnuEpTDzc+/9uIjq/X2+6oIOWoQgwyjTt3Ur5sOTWrVqECA4k5/3zirryCgBGd/H4YgkrqSlhfsJ6cghw+L/4cu9NObHAsp4w5haz0LOakzJFmOQNJXbkrUfy2JXEs+6Fl2yhTcMu+jO7S1KRJECJ/44jukURSHJC227H87x3KH30UW2EhITNnkvqvfxE250ij4c5tt6OtVkypqYO6cYDWmu8qvmP13tWszluN7nANG6SEpUgSOVg0VMKmh+GTB4xZRz+T8d79bxsUZSSLs65oWdMYf2jr9YxuUo4qxLBV/8UXlD/xBHUbP8IvPJy4q64idvEiTPHDYx38HsseY71jfg7flH8DQHpEOosmLiIzPZOp8VPxl739fMthB/Ou9qWptSUt50SkGIni+AUts4yx48BfUgHRe/LTMwzlLVoMHLhTqnY4qH7/A8ofeQRrXh7BU6aQ/Je/EHbcsc3NA6IWLqTq1de6vNZA5U4eV+1dxeq9q9lXuw9/5c+clDnMTp7Ne3veo8nR1Hx+sH8wN828yYcRiw5pDTVFLR1T3eWpVfmtz3PajWRy9lI46jqj5Xh3G2FIOaoQw4rWmrqPPqJ82TIatn6Bf2wsCbfcQszFF+EfEeHr8LzKqZ18U/5Nc/Lo3sZqctxkfjnjl2SlZzE2auywbCQ0INRXGJU0zbOM30Dp90aFC4B/ICRMgHFZRuObJNdbmPRwEH1PEknRitaamjVrKH/4YZp2/UTQhAmMfOxRwjMyBsWgcaBOq2B8fTsrdhozjx7J41EpR3HVtKvITMskOjgagCOTj5QtOwYapxMq9kDxNo/EcXvrtR2x42DEEUZDnEZLm+fb4fv34JR/9Ox1pRxViGFBOxzGGPjEMpq++w5TSgpJt91G9Lnn4BcS4uvwvMbmsPF58efk5OeQW5BLWUMZJmViVvIsLp54MRlpGSSHJfs6zOHF6XCNd21KU6v3t5wTlmAkiXOuhqSpRuLYWWWNEF4giaQAjASrdsMGyh56iKad3xE4diwj7v8PESedhBokG8V21mlVa82Y6DHGVh171xwwefR02tjTJHH0Bc/tLMKT4NCTwRTkWs/4LVhrjfP8AiDxMOO4e6uN5CkQ5JotuCu64+v3Zl0jSDmqEEOYtlqxZGdjXr4C6969BI4eTcr//R9RC09HBQ7NNX+11lo+3v8xOfk5fLT/I2pttYSYQjhuxHFkpGVwwsgTiAqK8nWYw0OjxbW1hnubjW+h9Duw1RvHlb8xyzjqWNcs42QjcYxI8m3cYtiTRHKYsWRn07BtG9pqZVdmFgk330xAQjxlDzxIw7ZtBKSlkfqPvxN5+uko/67XPAykktbOOq3e/sntOLQDkzIxJ2XOAZNH4SNNtcbAufVp+ObVlnbjtSXw5TNGE5zUGTD94pb1jAkTwXSAP/D6el2jGPTe/mo//1r1A4VVDaRGh3DrSRP4xYzh0yhFtOdsaKDqtdcxP/kk9uJigiZNZMQDDxCxYH63xsDBpryhnNyCXHLyc/is6DNsThuxwbHG/sdpmcxJmUOwKdjXYQ5dTidU7fXomOoqTfVcihESY8wyHnF5y76MCYcZN1SFGGAkkRxGLNnZFN1xZ3OnVXthIUV/+AM4nZhSUki++y9En3UWKmBwlkR01mnVoR3cfczdZKRlSPI4ENSZ25emmn+i/fYaHsITYMmqnr2OrGsUHt7+aj9/fPMbGmzGTYr9VQ388U2jcYgkk8OPo7qayhdfpOKZZ3FUVhI6axYp99zTqg/AULHXspecAmO94/ay7Wg0I8NHctFhF5GZnsn0hOnSLMcbmmqhdGfL9hol3xrv3VU1yg/iDoERs1qSxqQpEJna/fX7QviYJJLDSOn9D6AbW8/Y4XTiFxXFuFUf4jcIy3e01uw072RV3ir8lB8O90yWh5SwFM4af5YPohvmtDbWchR5NMAp2g7VHqWlUWmQcjhMPc+YZXzpIjpMKC372z/WFXcZqmyIPKj11Sziv1b90JxEujXYHPxr1Q+SSA4j9vJyKp55lsoXX8RZV0fY3BOIv/pqQo84wteh9RmndrLTvLO5Wc5uy24AJsZO5Prp15OZnsn46PFDLmH2Ga2N6pdW+zJ+CxU/06pLeNJko6qmeZZxIgSG+jR0MfT0d+WNJJLDiL2oqMPHndXVgyqJ9GyYs2rvKvbX7sekTIyNGsve6r3Y3PsjIZ1W+822V+CdG8BhM9YoRo40ylIbKlwnKIgfD6OObilNTZ4GobGtryPbbAgPfTmLWFjV0KPHxdBi278f88onqXrjDbTVSsTJJxF/9dUET5zo69D6hM1hY0vJluZmOaX1pfgrf45IOoLzJpxHRloGqeGpvg5z8LM1uGYZPUtTd0CTR2O32LFGsnj4Ra61jFMgOl1mGYXX+aLyRhLJYaBpzx7KH3nEuGvWAVNKSj9H1FpXnVah426r7jWP10y7hsz0TKKCorp1LXGQ7FYo+75llvGndVCxu+V4U41xfNQxMPksY8YxaTIEhnV9bSlHHRIG4ixianQI+ztIGlOjh24nTgFNu3djXr4Cy7vvglJEnXkGcUuWEDRmjK9DO2j1tnqjWU5BDhsLNlJjqyHYP5hjRxxLZnomJ4w4QZZz9JZ7W6m2+zKafwLtNM4JCDPGtqnntOzLmDgJgsJ9G7sYtnxReSOJ5BBmLSig/JFHsWRn4xccTFhWFvWffNKqvFUFB5N4y80+i7GzTqsAp445td0+j101zJFOq33MWmfcbS3a1vJW9j04jHW2BIa3fNyKNpoHHHlVz15PylEHvYE6i3jrSRNaxQUQEuDPrSdN6PG1xMDX8M23mJcto2btWlRQEDEXX0TcFVcQ4OMbpwervKGcDQUbyCnI4dPCT7E6rUQHRZOZnklmeiZHpx5NiElujrSy/dUDjyn2JmNca1WausOjogZjRjFpqnFzNMnVNTVmDAySrvZiePBF5Y0kkkOQraiI8v8+TtWbb6L8/Ym9/HLili7BFBtrNNy57Xa01YopNZXEW24mauFCn8XaWafVez69h0e+eqTbW3WIXvLcaiNyBEy7wOgYV+xa11i+i+Y1HqFxRjnqUdcZs4zJhxslPHfHdnxt2WZjUBnqs4ju15aurUOX1pr6LVswP7GMuk8+wS8igrhrryF20SJMsZ38nhoE8qvzyS3IZV3+Or4u/RqNJjUslfMnnE9meiYzEmdg8pM/5zq0/dXWVS6WAmPM+/FDY0uNkm+h/Edjj2EAUwgkToSJp7fsy5g0GYJlGxQx8Pmi8kZ+8wwh9rIyypctp+rll9FAzAUXEHfN1QQkJjafE7VwIVWvvgYMjK07Ouu0WmerY3rCdEkevUFrqCmGzY/AZ4+3DKDV++Hj/xgfR4401jFOOadlTWPkiI7XeMg2G4PeUJlF1FpTVW+jpKaR0uomSqobKa0x3htvTWitueqEsfzp1KGxNk649kFevx7zE8to+Ppr/OPjSfjNr4m56CL8wwdfmaF7KYe7Wc5PVT8BMCFmAtcefi2Z6ZlMiJkgzXIOxGE3ylA/+H3rpRJg3Dj99g1jTEuaAhNOaemYGjcOpIOtGES01lQ32imraeTM6aks/2gPNkfLUjZvV95IIjlI5C1aDHSc/NkrK6lYuZKK519A22xEn30W8ddeS8CIgXunXWvND5U/EBYQRq2ttt3xpNAkHl/wuA8iG2K0hsq9Hl1TXeWpdWWdPycyFX69o/uvIesafaovZhIH/izi9xRWNZIQEcS5R4zEqTX/Xb/blSgaCaI7abTane2uExUSQFJkEEmRwYxLiGdyamSPYxEDj3Y4qP7wQ8zLltP0ww8EpKaSdOcdRJ99Nn7Bg2svRJvTxpclXxrJY0EOxXXF+Ck/ZibO5Hezf0dGWgYjI+TmXIcaq1u21yjebpSmln4H9sYDPEnBr3f2W4hC9JT7xmhpTVPzOFfquklaVtMy5pXWNNJoaz/uASRFBvHHUyZK11bRMUd1NRVPP0PFM8/grK8n6oyFxF9/PYGjRh3web6aidRa82Plj6zau4pVe1eRX5OPQuGn/HDqlv8Ewf7B3HLELT6JcVDobL2Hww7mXe2323B3k/MzGe3Gx59olKZ+8Hs63GqjuuPuvp2SdY0+01czib6cRay32psTwZLqlpnEEvdAWd1IRZ0NDZTWNPHY+pbGThFBJhJdCeLs0bHGxxHBJEUGN3+cGBlEcIDMMAwlTqsVy9tvY16xElt+PoHjxpHy93uJOu20QbUPcr2tnk2Fm8jJz2HDvg1UW6sJ8g/i6NSjuf7w65mbNpfY4MFbktvntDbGGPc6xuLtxrrGyp9bzgmJNZrezF5qvF9zp9FBvC2pmBE+4nRqKuqtlHokhqU1LdUzpTVNzcmi1dE+QYwIMpEQGURiRBAz0qNJjAgi0TXWtbwPIjzI1C9VC15NJJVSJwMPAv7ACq3139scDwKeBY4AzMAFWuu9SqkFwN+BQMAK3Kq1zvFmrAOZJTubhm3b0FYruzKziL/+OhzlZsxPPYXTYiHi5JNJuPEGgg45pF/j6m63VXfyuDpvNXnVefgrf45MPpIrplxBVnoWmwo3SafV7upovcfb10LO36C2GOyux03BRpnO1HNc6xmnGd3kAjzu0m96uO9KUmVdY48MtPWI3phF/OeH31NkaSQuPJDTpqZQUWfl3g++a0kUXUljTZO93TWCA/xIjgwmMTKYqSOjmR8R1Jwwut8SI4IIC5J7ocOJs66Oytdeo+LJp7CXlhI8ZQqJDz9ERFYWapA0PalsrGR9wXpyCnLYXLiZJkcTkYGRzEubR2aa0SwnNED2FsRuhfIfXAmjx1tjVcs5seOMZRczLjHGuKQpRkWN5x/Pyk8qZkS/cDg15tqm1jOI1S0fl7mSxbKaJuzO9jfxo0ICjKQwMog5Y2JdyWIwSe4E0XUsNHBgjXtei0Yp5Q88CiwA9gFblFLvaK09awmWAJVa60OUUhcC/wAuAMqBhVrrQqXUFGAVMHDrNL3Ikp1N0R13oq1GZ0x7YSHFt98BQHhGBgm/+qVP9sHqqtvqrqpdzd1W91bvxU/5cWTykVw2+TKy0rNa3WWVTqtdsNYZd12LtsHau9qv93A6oKbQuAObMs1IHOPGg38X/72lJNUnBuJ6xJ7MItodTsprrS3rDmuaKLG0fFzqeryy3tjPtbzWyjOb8wAI9PdrTggnJEdw/PgEV2IY1Pw+MTKYiH66kyoGB0dVFRUvvEDls8/hsFgInTOHlHv/RtgxxwyKn5PC2kJy8nN49YdX+bnamD3zU37MSZ7DkqlLmJk0kwC/wTOT2ufqKzxmGV3vy74H957QphBImgSTf2HMMiZNNT4Piuj62lIxIw6SzeGkvLap1bp7IyFsXW5aXttEB/khsWGBJEYEkRARxPikCNcMYlBz5UxiRDAJEYO3csabae2RwE9a6z0ASqmXgTMBz0TyTOAu18evA48opZTW+iuPc3YAIUqpIK11kxfjHZBK73+g1XYdbv7x8aT99zEfRGTorNvqXz/9K49ve7w5eZydPJtFkxaRlZ5FXEicj6IdRBoq25Smtumc2hmHFU7+W89eSwbYHhlos4jQdzOJv5gxAu3U/GP1D5RYGokNC2T+xETyzPX86a1vXMlhE8XVjZTXNrXbktbfT5EQHkRSZBBpsaHMGh3TXGKaFOVKFCOCiQ4NGBR/+IuBwVZaSsUzz1D10ss46+sJz8gg7uqrCJ0xw9ehHZDWmt1Vu1mXv451+ev4ruI7ABQtP/tO7eSr0q8obygfPkmk0wlVe1snjMXfQLVHh+/wJCNZHD/ftTfjtINvgCMVMz7RV2OmtzTZHZS5ksJSj5LSlvWIRrJorrO2G/OUgrgwd0IYxOSUqOaS0sTI4Ob3CeFBBJoGR7VEb3kzkRwBeNbN7QPmdHaO1tqulLIAcRgzkm7nAF8OxyRS2+3YCws7POYwm/s5mtY667Zaa6tlctxkSR7b8txmIyrNSNjGzHUli1+7muBsh6q8lud4dk5NOdx4W3li33ZIlQG2WwbiLCJ0byZRa01tU+t1iK0/brmr6u70Zq6z8spW44+7uLBAEl2zhZNSIlslhu5ZxLjwIPz9JEEUfcNaUIB55Uosb76FttuJPPVU4q66iuAJh/o6tE45tZNvyr9hXf46cvJzyKs2fpdPi5/GLUfcwvM7n6esoXWTs0ZHIw9++eDQrMixNUDpztYJY8kOsNYYx5UfxB8Ko452JYxTjbfwxANfVwwKfTlm9lSjzdEmIWxZf1jmkSy6q2Y8+fsp4sMDSYwIZkR0MNPToptLSpM81iHGhwdi8h/aCWJ3DaxC2zaUUpMxyl1P7OT41cDVAOnp6f0YmXdph4Pq9z+g/JFHOj3H5MNNlXdX7T5gt9UVJ63wQVQD2PZX4Z1fGkkkGIngm1e1Pid2LIyYCbOucG23cTiExbe/lpSj9shQnkUEOHlKMua6Jv67fjfltVaiQkzMTI8h94dSXt6S35ww1lsd7Z4bEWRqTgrnjIklMTKYZFdpaXOZaUTwkL+bOhgM1bGuraZduyhfvpzq995H+fkRddZZxC1dQuAA/ZptThtbireQk59Dbn4upQ2lmJSJWcmzuHTipWSkZZAUlgTAA1880OE1OrspO6jUlrZex+jem9HdRC8wwtiPcfpFLUlj4kRj7BJDUl+OmW51TfY2DWka23QvNT6uaWy/7j7A36iaSYgMZlRcKLPHxLRaf5jgShbjwuSmaE95M5HcD6R5fD7S9VhH5+xTSpmAKIymOyilRgJvAYu11rvpgNZ6GbAMYNasWV3U/g18Wmtq1qyh/OGHadr1E0GHHkrMZZdR9corrcpbVXAwibfc3K+x7bHsaV7z6N7Tyg8/nEi31VacTqODXPMs4zb4eWPLgOopOBoufNEYYLu72bGUo3bbYJ5FdDg15bVNzbOFxa7upcWWlnWIxdWNVLW5o2ppsPPJbjPJ7hnE1EgyD0tsXoOYGBFMcpQ0qhlshtpY11bD9u2UP7GM2nXrUKGhxC5eTOzllxOQNPBmpxrsDWzav4m1+WvZsG8DNdYagv2DOXbEsWSlZ3HCyBOICmr/+zw5LJmiuvYdsZPDkvsj7L7hdIB5d8sWG+51jZ5dUaPSjERx4hkts4zRo2CQNEMSfaO7Y6bWmpomuzFL6LGdRWl1U/NY504W6zq4IRpo8mteczg+MZxjx8W1Ki11H4sJDcRPEkSv8OZfEluA8UqpMRgJ44XAxW3OeQe4DNgMnAvkaK21UioaeA/4g9b6Ey/GOCBoran76CPKHniQxp07CRwzhhH/uY+Ik09G+fkRMmUyRbfdjrZaMaWmknjLzUQtXOj1uH62/NzcbXVX5S4UiplJM/njkX9kwagFfF78+dDuttrZNhtuzdttbPN4295SuuMXYDQE6CiJBGi0wOhjex6XlKN2y0CcRdRakzEhkV9lHcKKj37GXGclMtjE1BGRvPdNEU998jPFroGz7aJ9PwUJrgX67nWI7s6mSZHBzcljVIisQxQDn9aa+s8+o/yJJ6jf/Cl+UVHE33ADMZdegikmxtfhtWJpsrBh3wbW5a1jU+EmGh2NRAZGkpGWQWZ6JsekHkOI6cC/C26aeVOrBnVg3Hy9aeZN3g6/d5pqjVLU4u0tCWPJzpbO4H4BkHgYjMtqSRiTJkOobFciIDU6mP1V7ft7hAb5c8MLX7YqN+1oD8SQAP/mctKJqZHMnZDQuoOp61hkiDRm8zWvJZKuNY83YnRc9Qee1FrvUErdDWzVWr8DrASeU0r9BFRgJJsANwKHAHcqpdw1eydqrUu9Fa+v1H36GWUPPkjDV18RMGIEKffeS9TC01Gmln+aqIULqXr1NeDg94DsasuOvZa9rM5bzaq9q/ix8kcUihmJM/jDkX9gwagFJIa23CEe0t1WO9pm450bjdlF/0AjaSzZ4bHdRogxkB5+oWs94zRjz0ZTINw/pW/XNQ5xfVWO2t+ziI02R6cziCWWRkpqGjscNKsb7ewoqjHWHEYFc2hShDFrGBlMUkQQyVFGohgv6xDFEKCdTmpzcyl/YhmN27djSkgg8dZbib7gAvzDw3wdXrOSuhJyCnJYl7+OrcVbcWgHiaGJ/OKQX5A1Kosjko7oUZMc91g54G6+ag3Vha5E0aM8teJnmpu8BUcb49usK11J4xSIn2CMb2JYaZlBbFl/6F5C4dnVtNjSPokEsNudfFdUTWJkEIeP9Fh/GOkqL3Uli/21B6I4eEq3bUU0SM2aNUtv3brV12F0W/1XX1H24EPUf/oppqQk4q+7juizz0IFeu8Xc9stO8C4I3rDjBuwOWys2ruKHyp/AGBG4gxOGn0S89PnN6/xGDas9fDg4VDXyX2LoMiWdYzut7hDOt9uo21SCsbakIUPycxiG23LUcFI2O49e2qPk8lj/57T4SziiOgQPvlDZrev4y4zfWVLPk9vyqOizkpEkImJKREEBfhT6kocLQ3tF+577oeY3Gqbi5ZZxMTIwdv2W4BS6gut9az+er3BNta5abud6g8+wLxsGU27fiJg5Ejili4l6qxf4BcU5OvwAKMKx90s55tyowx+dORostKzyErPYnL8ZPzUIC7RdNig7AePrTa2G81wGipazokZ40oWpxkJY/JUiBzRem9GMSQZTdkaPRrVtE4S3Ulj20ofgPAgU3PXUvf4VlrdyIYfy6iqt5EYGcSv5x/KBUcOzPXO4sAONM7JIhkvylu0GGg9i9iwYwdlDz1E3YaN+MfFkfTHPxB94YX9MpB2tmXHfVvvA+DwhMP53ezfsWDUgsG1buNgNFYbA6pneWr5D52Xo6Lg93k9W+8xDNY1DsSmNl3NImqtqW60N683dA+YxZaWbqadlZnW2xzkVzSQFBnEqLhQjhwT27z20D2DmBQZTGSw3FUVw5uzqQnLW29hXrES2759BI0/hNR//YvIU05uVXnjC1prdpp3Nm/TsceyB4DJcZP51YxfkZWexdjosT6NsdcaqjwSxm9a9mZ0GHtSYwqGxEkwcWFLaWriJAiO9GnYou/VW42u3aVt9vr13AOxszWIIQH+JEcZs4VTR0Yz32P/wySPtYjhsuZ+2JJ/eS+xZGfTsG0b2mplV2YWMRddSOM331KzejV+UVEk/PrXxF5yMX5h/VfKc6DucGvOXTM0kscDrWusr2iznnEbVHj0cQpPNmYXJy6ErU9CfXn760eN7F3TgCG8rnEgNrWx2p0cMSqGq04Yw3Ob86istxEeZOLQpHBe+jyfB9ftotjS2OGd1aiQgOaZwkOTIpr3QnTPKCZHBst2F0J0wVFbR9UrL2N++mkcZeUET5tG0p/+SPi8eSgfNl6xO+18WfKlMfNYkENxXTF+yo9ZSbM4f8L5ZKVnDa6xUGtj26i2ezNa8lvOCUswZhjHZbhmGqdC7LjOq2jEoNBgdbRaa9icLFa3PFZa3URNU/supkEmv+abnxNTI5k3wbMpW1Dzlk9SYiq6Ir9FvMCSnU3RHXeircadP3thIWX3/QcCA4m/4QZiL78M/4iIfomlsLaQ1XuNNY+6k03tU8JSBtfA2ZmO1jW+fT18+hjUm6HKY2CNSjfWMR5+UcuaxgiP70H8+GGxzUZfzCT2Z1MbrTUVdVbXGkSjpLTY0khpjfG+2HVntaLO2u4aVoeTstomkiODmezqZupOGJMj3d1MgwkJlDJTIXrLXllJ5XPPU/HCCzgtFkKPPor4f/2L0DlzfPYHaZOjic2Fm1mXv471Beupaqoi0C+QY1KP4frDr2de2jxiggdWg58O2Rqh7Ls2ezN+C03VxnHlB3HjIW02zHatZ0yaChHDbHnKINdocxj7HdZ47vnb0tXUXTFT3cE2F4Emv+aGNBOSIzh+fEKr7ZySXFs8SbWM6CuSSHpB6f0PtNquw80UG0PCL2/0+usX1xU3b9WxvXw7YJTqnDL6FHIKcmhy72fIAO8a1x3uRgFFX8N7v2md+AE4bcZgO/EMmLWkZU1jV53lhkk5al/MJPbVLGKjzcHlx4zmX6t/wGpvKS32V8YeUMf9I4fS6iasjtZlx0pBXFgQSZFBpEYFMyM9mqSIYJKjglqtRYwOlW6mQniLraSEiqeepvLVV9H19YTPzyL+6qsJmTbNJ/HUWGvYuG8j6/LX8fH+j2mwNxAeEM4JI08gKz2L40YcR2hAqE9i65a68vZ7M5b9ANp10y4w3OiSOu38loQxcSIEDuCvyUf6aunFwbLanc0ziKXVbZLE5i0v2m/rBMYY6O5WOi4hnGNc21y4ZxDdyaJ07Rb9TRLJPmYrLcVeWNjhMXuJ95rOFtcVsyZvDav2rmJb2TYAJsZO5OaZN3Pi6BNJizC29Oyqa+uA5i7hKdoGhV+3lKd2VILqyemA857q+esN0HLUgbYesatZRKdTY66zNq8/LHavP3R9fKBmNQqIDQskJSrE1cnUNXvobmDjKs0J8B/EDTCEGMSseXmYV6zE8vbbaKeTqNNPI27pUoLGj+/3WMobysnJzyEnP4fPij/D7rQTHxLP6WNPJys9iyOTjyTAv/udVvtcR0svppxjdEhtuzdjjceek5EjjGTxsNMgydUAJ2aM7M3YDX259KIzNofTNYPoLif1aFJT0/K+o0oZk58iMSKIhMjg5vX27llDz8Y10SEBsg+iGJAkkewj9spKzMtXUPnCC52eY0pJ6dW1O0v+SutLm5PHr0q/AuCw2MO4aeZNnDjqRNIj23fHGpBbdnQ4uJ4LFXuMmcaibS3vGy3Gc/xMxvYah54MqdONWcbXLofq/e2vP4S22Rho6xEbrB3PIvopMPnBMfeuo7SmCXubbjWeeyKmezSrcc8eJkcZA2mErM8QYkBq/OEHzMuWU/3BByiTiahzzyFuyRICR/bv79uC6oLmZjnbyrah0aRFpHHpxEvJSs9iWsK0gdFpdfur8M6vWraMshTAW9cYyy+crptofiZIOAzGzmtJGJOnyt6MB+FgbpjaHU7Ka61ttrhove1FaU0j5jorbTdA8PdTJIQbW1uMjAnliFExrUpM3c1qYkMDJUEUg5okkgfJUV2N+amnqHzmWZwNDUSdsZCgwyZS9uCDrcpbVXAwibfc3OPrt92yo6iuiNs/uZ3Htz1OXnUeGs2hMYfyyxm/5MRRJzI6anQffWX9pKN1jW9dA/+7EdwluP6BRgnP5LNcpanTje5yAcGtrzX/riG/rrG/1iM6nZryuiZKLK51iNWNlHjMJrpnFDtao6GA+PBARsaGNu+NmOwuMXV9HB8eiElmEYUYdOq/+grzE8uoXb8ev9BQYq+4nNjLLiMgMbHrJ/cBrTU/VP7QnDzuqtwFGDdRr5t+HVnpWYyPHu/7G1B15cbNT/c2Gzv/B842vy+1EwJC4ZQHjYQxYQKYBsZWKEPFgW6Yfrvf0nqLC4/y0pLqJsprm9oliH4K4l0JYkpUMIenRbdqUuPuaBoXJg3ZxPAgiWQvOevqqHjuecxPPomzupqIk08m4cYbCDrkEABM8XEU3XY72mrFlJpK4i03E7VwYY9fp6MtO+xOO/tq9nH99Os5cfSJjI0aRO3JHTajBbm7LPWLp1vakbtpJ/gHwGn3GYljwmHd2/h4AK9r7Kty1L6aRSyubuQXM1JZtnEPNkfLSKkU1DXZOPT2DzqdRUyODGZ0XBhHjY3zmEEMbr7bGhHsw9IxIUSf01pT98kmzMuWUf/55/hHRxP/q18Se8kl+EdFef31HU4H28q2NSeP+2v3o1DMSJzBrbNuJTM9k5ERPqo8cTqhai8UbfdY07i9dWlqVHr7JNLNWgczLumXUIc6rTVV9bbmG56l1U2EB5uo6eCGpwZOf/jj5s/da+2NZDCIKalRzZ1L3U1qkiKDiQuTm6BCeJJEsoecjY1Uvvwy5mXLcVRUED5vHgm/+iXBkya1Oi9q4cJeJY5ulY2VrM1fS1FdUYfHHdrBtYdf2+vr94kDbbUBYG+C0p0tSWPh11Cyo2WmMTC8fRLpZq2DmYt6HtMAXNfYl+WoXc0iVtRbm/dBLLI0drgusaNZRDDWaoyJD2XqyOhWyaH743jZ8kKIYUU7ndSsXYv5iWU07tiBKSnJ2Pv4vPPwC/VuUxerw8pnRZ+xLn8duQW5VDRWEOAXwJyUOSydupR5afOID4n3agzt2JuMG6HF37ROHK01xnHlb9z4HDPX6ASePNUoUQ2NhfunGBU3bQ2hpRfeVNdkb5Ugen7s3vO3o2ZsHTH5KX4xYwQLJiU13wCND5e19kL0hiSS3aStVqreeIPy/z6OvbSU0KOPIuFXvyJ0xow+e42qxipyCnL48OcP+bz4cxzagb/yx6Hb73Xn8+06OipJ/d+NsCfXWOdR+DWUftey9iMoyhhYj7wKUmcYM42x4+DBaQN2cB1ITW0abQ5Kq5s4e+YIHt+wu4NZRDsT7vig1ePQvVnE5CjZTFgI0ULbbFjefQ/zihVYd+8mID2d5HvuJurMM/EL7EZ1SC/V2er4aP9H5OTlsHH/RupsdYSaQjl+5PFkpWdx/IjjCQ8M99rrt9JQ1dL4xp00ln3fMqYFhhtJ4uEXGgljyjRj3X7bJRduWXcO+aUXvdFkN7a68CwxLe4gQaztYC/EsEB/kqKCSYoIZtaomOaPk9zr7F1rET/4pnhAdG0VYiiSvx67oO12LO9kU/7oo9j27ydkxgxS//lPwo6a0yfXtzRZyMnPYVXeKj4r/Ay7tpMWkcaVU67kpNEnsatyF3/Z/JdW5a0+37LDWgerbmu/1YajCb5+EUJijHWMR9/Q0ggnZoyR8bQ1QAfX/mpq41mK416H2DyT6JpBLKlupLKDduDgMYs4IlrWIgohDoqzsZGqN97AvHIl9sIigiZMIPW+fxN50kkok3f+XKhorGB9wXrW5a/j08JPsTqtxAbHctLok8hKz2JOyhyC/L24btC9hZS7a6p7XWNVXss54UlGsjh+gStpPLznXVMH8NILb3A4NWbXOvuS6kZj3aHFlSzWuPf/7biTaaC/X3MzmsOSI5h7aMteiO4upkmR3b8B+osZIyRxFMJLJJH0YMnOblnXmJJCeGYG9Zs2Y/35Z4InTSL5z3cSdvzx3VrEf6BtNmqsNeQW5LJq7yo2FW7C7rQzInwEiycv5qTRJzExdmLza0yInYBSyndbdjTVGINq4dctnVPLfzTWMf5/e3ceHmV57w38+5uZZLKSnSQEkkAgCQmbsrihCOEIFoMWBbRY8bSeHl5cWFr3czyob1uwrVZqbbV4XkUERbQISKUKouJSASGEhIhR1uwEyELWmbnfP+aZYZLMJDPJJBOS7+e6cs0zz3o/90xy5/fcm1MCPHTMedDojJcL195Ui9hstqC8phFRIUacqW1ss12nE6T/9wdoNDmfFzEuzIjBEYGYkBzRJkCMDQvAAPZFJKJOqNq6FeXP/RGmkhIY4uMRvWgRzOfP4+xrr8FcWYnAyy5D3BNPIGTKlG4ZtKa4ttje3/FA+QFYlAWDggdhXto8ZCVm4bKBl0Gv03v9ujCbgMpCLWg8dLG2sf6stoMAUSlAwuXA+LuBOK15amisd67fC7teeEophep6U4uB1xxrE8tqGlFW1YCK2kaYW/WzFwFiQqzB4OCIQFyeZCvbrKN028q5CM75S3TJENV6SKpL1IQJE9S+ffs6fXzV1q0o+e8nWoy0CgD62IGI+6//Quj06W7/YWs90ipgrUWcPXw2yuvK8XnR52i2NCM+OB4zkmdgRvIMZEZl9swfzvb6NTZUWQtVW8BYfNBa6EL7joTEaTWM44C9a5zP3xg2BFh2uPvvw4nWtYgAEOinx2/njPY4mBz6yPtw9pshAI6tnIXaRpO176FD/8OSqnqUVl1sjuNsxDcbnQDjBodjwtDIFk1NOS8i0aVFRPYrpSb01PW6q6wDgODJkxH9n79A4IQJXi2PlFL4/vz3+OjkR9h1cheOnD0CABgePhxZiVnISsxCemS6d8vApgtAWX7LoLEsDzBp9603ArEZ2hQbY6w/sZmAsYeazvZC9U1me/nlrC+ibbn1w08ACAv00+b3NdrLtNYBIlvIEF2a2ivnGEhqvpuWBVNxcZv1hvh4jPh4l0fnumHTDS4HyYkNisUNyTdgRvIMjIke07NP3Vr3awQAnZ+1mU79Weu8jTYDBlvX25qmxo8FQuPaP5dfIJC92mdPXK9ZucvpQDQJ4YH4/JFpbp3DYlGovNCEH63+DBU1bWsRDTpBgJ/eaX+N8CC/izWHDoFh3IAA5JdUY91XJ1Ba1cA+GkR9yKUWSLoq6/TR0Ujd81lXktaCRVmQeyYXO0/uxK6Tu3Ci2tpUdGzMWGQlZmFa4jQkDUjyzsVaT7VRmmt9CGprORMQrg1+M+Zi4Bg9wjo6eD/QbLagoqZR629orT10NliNs9FNA/309gectlYxjsuxWj/EAL9uqEEmol6hvXKOTVs1phLngZ+ptNSj89Q117kMIgHgn7f9s+cnR647CxQfALb/qm2/RkuzdVv6j4BxC6yBY9xYICSm/XN6sUlqT02N0WSytOh7aKtNdHxfXtPQZsAaGxEgIz4UlydF2gPEOId+iYH+rgvSqekDce/U4R7fExGRN7kq68yVlV0+d7OlGXtL92LXyV3YdXIXKuorYBADJsZNxE9H/hRTE6diYFAX5ptsM9WG9tp6qo240cCoWy8GjWGD3e9u0Y28VdbZOI7UXV7j0Ly0uuVy5YWmNq1jDDqxz3mYEhOCq1Oi2g5WMyAAoUYDm5kSkUsMJDWG+HiXNZIdaTA1YE/RHuw4vgOfnP7E5X7xwfHdH0ReOKP1ZzygvR4Cqk62f4yyAPPXeX4tL/T38NagNjUNzYgJNaLcWS2iXjD+6Q9R6aRTf6CfHvHa6KVXDI20D1gTFxaAb0ursf5fp1BWzVpEIuobulLWOVPXXIcvir/AzpM78cnpT1DTVINAQyCuGXQNpiVOw3WDr0OYsRNzTdqm2mgxP6ObU230Qp6UdUop1DSaUF7dYO8u0XqwmjJtsJrW8/0CQHSIv31AmjGDwxwGqLk4WE1kkD90nM6JiLqIgaRm4LKlbfqNSEAABi5b6nT/JnMTPi/6HB8c/wC7T+1GnakOEcYIZA/LxgD/AVh3ZJ33Rlp11a+xpqxlf8aSg0B10cXjIlOAIROBSfdY+zVu/j8tt9t0cqoNbzxd7WhQG8cnrqVVDShpNbJpSVU9ylwMDQ5Y+zSOGBiCsUMiEO8wUI0teBwQ4Ppp64zMODyQlerR/RAR9WaelnXOVDVW2Uda/bL4SzSYGxBmDMPUIVORlZiFqwddjQCDi2kwnPH2VBu9kKuy7n+2HEZecVWb2sTW+wJAaIDB3gLmypQo+7JjX8QY9rEnoh7EQFITlp0NAC1Gshu4bKl9PQA0m5vxZcmX2HF8B3ad3IXa5lqEGcNw49AbMSN5BibGTYRBZ83S4RHDvTPSqrP5Gv/+n8D7vwIaq7SdBIgaDiRdrfVnHGctaANaPQWevsJrU214oyax2Wxx2Ry16Hw9Jq/ahbLqtk1N9TpBbKgRsWEBSIsLxXWpMfbAsLC8Fhv3nUJ5dSNrEYmIWnGnrHOm9EKpvcnqvrJ9MCszYoNi8eMRP0ZWYhbGx463l38u9dRUGz5g619vCwZt0zlZu080Ou2/DwBV9Sas/fKEvW/9qIQwZI0MaDNwzcABRgT58182Iupd+FfJwZ5MHZ5frEfpBQPigvVYkqnDDZZmfF3yNT44/gF2ntyJmqYahPqHYnrSdMxInoEr4q+An65th/1Zw2Z1LnC0FbQlB621jF+svjjKnH0fi/VJ7YzfXAwajaEdn9uL/Ro7qkmsazJd7IPYogbx4uuZ2kanI6MCgL9Bh4nJbfsixocFICrECH07TXJ+eUOax/dDRNRfhGVndxg4AsCxqmP2wXJyz1gfFA4NG4p/H/XvyErMan+08dZTbdhqGntqqg0vqm8yt5jX13Fk01Ktuamz/vW26S7iwgIQYNChwclop/FhAfjikWnsh0hElyQGkprWU3aUXCjB43sex5NfPIl6cz2C/YIxbcg0zBw6E1fFXwU/b4z2ppS1qamtWart9UKFdbvoXM/X2FwPXHWvx5fcbL4Gv2tcjeKGegwKCMSD5jTc4lGSrXNItVeTOPbJf6KqvrnNtrBAP3vNYUb8AMSFBaDkfD3+fqAYTeaL99nZKTuIiKhjruY5VkohvzLfPsfjD1XWkbxHRY3CksuXYFriNAwLG9b2hPapNnIu9mV0NtXGyJt61VQbZotCZW2jfRRTx1rEModAsdrJaKbB/np7n3pb//rYUGvQaBvRNCbEaJ/uwtX0VA/P9PK0J0REPYiBpOb5b55v0acRAMzKDAWF56c+j2sSroFRb3T/hM76NSZe1TJgLD54cS5G0VkHDhj+bxfnaowbBfz5Cmtz1tY60a+xo+aoFovCmQuNKKtqtM6JaKtB1GoUbU9knfXdsAkw6HDzuEEtahLjwwIR186oplelRHt1JDsiInLO2UPTJz5/Au8Vvodj1cdQeqEUetFjfOx4zEubh6zELMQFO0z9VFtxsWlqe1NtTLzHp1NtXGg0tQoMG+2BoX3qi5pGmFsNVqMTYGCotS99clQwrhwW1WJKJ1ufxNAAz+7HVqaxrCOivoTzSGrGvDYGyklDS4Hg0MJDnp3s0EZgy/1tm6TaT6qNNmcLGAeNsw4k4B/k9Fym9+6HwSHINekDYLj5Tx41SW02W7Q+h21HNfXX67QRT9s2zbENEW6bEzFeWz51tg5v7j3VYmJi1iQSUX9zqc0j2d48x9cPuR5ZiVm4fvD1CPcf4P5UG7ZRU3tgqg2zRaGiprFN89JSh4FqyqoaUONkALZQo8Fei2ib4sI2iqktUIzuoOsEEVF/w3kk3RAXHOe0cG3xJNYZpYDzJ1vWNP6w23mT1IBwYMEma02jX6Bb6dpsvgZ7mu/BUryJQVKJYhWFP1pux2TzNfYmqQ3NZnu/Q1t/xNKq+hb9EStqG9vMI2XTZLZg0tBIrfbQoU9iWACig40uhwi/LDGCT1eJiC4hpS6CSAHwp/BJwNEvgE//CpQe7vGpNmoamrXAsLFN81Jb4FhR04jWM14YdIKBodaRS4fHhGDy8OgWgaItcAw28l8eIiJv4l9VzZLLl2DFnv9Gg7rYty9A/FpO2dEiaLTN05hzcfAAncE6JLmrfo0NVdbpODyw6oMClDRdjU24usX6re8cwkuf/oDSqnqcq2vbHzE0wGANCsMCkR43ALFhAVj7xXGcd9J3MSE8EM/NH+dRugBrUx0GjkREl444s0KJvu3DwbhmE7Dlvm6ZasNktqC8prFFYFjq0NTUNi/ihaa23SYGBBjsTUpTY0MRFxZgn+rCOp2Tsd0HnkRE1H0YSGpm1V4AzlTi+QFBKDXoEWcyY0l1FWYVfAL8sPdibWP9OesBOgMwcCSQPktronqZdfAAvwDUrUpHUH3bp751gXGwNV61DVpTUl3vtCbRNm+is+Y5ANBosmBQWAAuTwy3B4zxDp38Q5w8eR0WHey0s/+DMzjKKRFRf7Ck8ixWREegwWE6jQCLBUvOnQfu/8ajqTaUUqhuMLVoXlpebetPf7H56RknLWL89GLtizjAiPS4UExJjWnRD9FWi+iqbz0REfkeA0mbnU9hVvV5zKo+33L91y9pQWMGMDL7Yp/GgZkun9A+0zwfD6kXESRN9nV1yh9PXLgVxX/7yh40th60xjZUeHxYAIbFBOOa4dF495vTTkeMSwgPxCt3e1a7yc7+RET92yxDpPWhaUT4xYem585jliHKOh2HpslkQUVt48VmpQ7NS0urrAPVuBp8LTzIzx4IZsRbW8TEDjA69E0MQGSQP2sRiYgucQwkbapOu9ggwGPFgME6YqttZNPSsgaUVJ1vU5NYUtWAk7WTcFbXhIcMG+39Gp8xzcMWy9W4vNmMkfEDMDV9oFaTGGCvURwYaoSfvuWT4HFDwr1ai8jmqERE/dfelPsxbf9/YdaFYvu6OuWPP0XcgYOv7rX3TTxT29TmWH+9DrFhRsSGBiBj0ABMSx+oNS+92NR04AAjAvxYi0hE1B8wkNTUBcY5bY56Rh+DFRvz7AGjs5FN/fSijWgaiHFDwnH2QhO2NE7GlqbJLfZLCA/Eu4uv8ShdrEUkIiJvWZo/AuOb72nzoHNb2TikSQPiBhgxZnBYi9FMbbWIEUF+nPOQiIjsujWQFJGZAJ4HoAewRim1stV2I4C1AMYDqAQwXyl1XNv2KICfAzADeEAptaM70+qqOepT9bchr7jaPumwYw2irUaxdRMdVxMPsxaRiIh8qfh8PYrQ9kGnAPjHkmt9kygiIrokdVsgKSJ6AH8G8G8ATgPYKyJblFL5Drv9HMA5pdRwEbkdwCoA80UkA8DtADIBDALwkYikKqXadsbwktdcNEfdapmMY7+63qNzsRaRiIh6o0HhgSg6X+90PRERkSe6s0ZyEoBCpdQPACAibwK4GYBjIHkzgBXa8iYAL4i13czNAN5USjUCOCYihdr5vuyuxA4KD8SW886bo3YGaxGJiKi3eXBGGkfvJiIir3BvjO/OSQBwyuH9aW2d032UUiYAVQCi3DzWqx6ckYbAVgMEsHAlIqK+5JbLEvDbOaOREB4IgfVh6W/njOaDTyIi8tglPdiOiPwCwC8AIDExsUvnYnNUIiLqjbxZ1gFsMUNERN7RnYFkEYAhDu8Ha+uc7XNaRAwAwmAddMedY6GUehnAywAwYcIE1Xq7p1i4EhFRb+Ptso6IiMgburNp614AI0RkqIj4wzp4zpZW+2wBsFBbvg3ALqWU0tbfLiJGERkKYASAr7sxrUREREREROSmbquRVEqZROQ+ADtgnf7jf5VSeSLyFIB9SqktAF4B8Lo2mM5ZWINNaPtthHVgHhOAe7tzxFYiIiIiIiJyX7f2kVRKbQewvdW6JxyWGwDMdXHsrwH8ujvTR0RERERERJ7rzqatRERERERE1AcxkCQiIiIiIiKPMJAkIiIiIiIij4h1kNRLn4hUADjh63RQl0QDOOPrRPRTzHvfYL77hjfzPUkpFeOlc3WIZV2fwN9732C++wbz3Td6pJzrM4EkXfpEZJ9SaoKv09EfMe99g/nuG8x38iV+/3yD+e4bzHff6Kl8Z9NWIiIiIiIi8ggDSSIiIiIiIvIIA0nqTV72dQL6Mea9bzDffYP5Tr7E759vMN99g/nuGz2S7+wjSURERERERB5hjSQRERERERF5hIEk9QoiclxEckXkoIjs83V6+ioR+V8RKReRww7rIkXkQxH5TnuN8GUa+yIX+b5CRIq07/xBEfmRL9PYF4nIEBH5WETyRSRPRJZo6/mdJ59gWdczWNb5Bss63/BlWcdAknqTqUqpcRwmulu9CmBmq3WPANiplBoBYKf2nrzrVbTNdwB4TvvOj1NKbe/hNPUHJgC/VEplALgSwL0ikgF+58m3WNZ1v1fBss4XXgXLOl/wWVnHQJKoH1FKfQrgbKvVNwN4TVt+DcAtPZmm/sBFvlM3U0qVKKW+0ZZrABwBkAB+54n6NJZ1vsGyzjd8WdYxkKTeQgH4p4jsF5Ff+Dox/UysUqpEWy4FEOvLxPQz94nIIa05EJtZdSMRSQZwGYB/gd958h2Wdb7D33vfYVnXQ3q6rGMgSb3FZKXU5QBuhLVK/jpfJ6g/UtZhnDmUc8/4C4AUAOMAlAD4g09T04eJSAiAdwAsVUpVO27jd556GMu6XoC/9z2KZV0P8UVZx0CSegWlVJH2Wg7g7wAm+TZF/UqZiMQDgPZa7uP09AtKqTKllFkpZQHwN/A73y1ExA/WgvUNpdS72mp+58knWNb5FH/vfYBlXc/wVVnHQJJ8TkSCRSTUtgzgBgCH2z+KvGgLgIXa8kIA7/kwLf2G7Y+75sfgd97rREQAvALgiFLqWYdN/M5Tj2NZ53P8vfcBlnXdz5dlnVhrOol8R0SGwfpkFgAMANYrpX7twyT1WSKyAcD1AKIBlAH4HwCbAWwEkAjgBIB5Sil2lvciF/l+PaxNfRSA4wD+06EvA3mBiEwG8BmAXAAWbfVjsPYd4XeeehTLup7Dss43WNb5hi/LOgaSRERERERE5BE2bSUiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkCQiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkKQ+S0TCRWSxw/tBIrKph9OwQUQOicgyEVkqIkE9eX13ichjrd5/0Y3Xul5Eru7EceNE5Ecutt0tIhUissbDcz4lItM72Ge+iBSKyDZPzk1E1N1YzrmP5Vy7+7Cco07hPJLUZ4lIMoBtSqlRPrp+HIA9Sqnh2vvjACYopc54cA69UsrsYptBKWXyUlprlVIh3jiXG9daAaBWKfV7D44xALgT1vy7z8n2u11t8wYRuR7Ar5RSN3XH+YmIOoPlnEdpZTnX/vWvB8s58hBrJKkvWwkgRUQOisjvRCRZRA4D9id7m0XkQxE5LiL3ichyETkgIl+JSKS2X4qIfCAi+0XkMxFJb30REZkkIl9qx34hImnapn8CSNCu/z8ABgH4WEQ+1o67QTvuGxF5W0RCtPXHRWSViHwDYG6ra70qIn8VkX8BeMZV+kQkW0T+paXpIxGJ1daHiMj/E5Fc7QnyrSKyEkCgls43tP1qtVfR8u6wdsx8bf31IrJbRDaJSIGIvCEi4iRvHhCRfO1ab2r/9CwCsEy73rXtpHWFiLwuIp8DeB3AUwDma8fNb++D9+DzfVVEbnPI9ye1zyPX2WdNRNTLsJxjOcdyjnxHKcUf/vTJHwDJAA47ew/gbgCFAEIBxACoArBI2/YcgKXa8k4AI7TlKwDscnKdAQAM2vJ0AO+4uP5xANHacjSATwEEa+8fBvCEw34PubinVwFsA6BvL30AInCxxcE9AP6gLa8C8EeH80Vor7WtrlOrvd4K4EMAegCxAE4CiAdwvZZng2F9IPUlgMlO0lsMwKgth2uvK2B96okO0roCwH4AgQ6f2Qsu8qXFNg8+31cB3OaQ7/dry4sBrHE43/WwPvX3+feaP/zhD39sP07KGft7D/4OspxjOQewnONPJ34MIOq/PlZK1QCoEZEqAFu19bkAxmhPTq8G8LbDQ0ijk/OEAXhNREYAUAD83Lj2lQAyAHyundsf1kLK5q12jn1bKWXuIH2DAbwlIvHauY9p66cDuN22s1LqXAfpnAxgg7I2OyoTkU8ATARQDeBrpdRpABCRg7D+Q7Gn1fGHALwhIpsBbHZxDVdpBYAtSqn6DtLoSrufr4tj3tVe9wOY08nrEhH1FiznWM61xnKOvIaBJPVnjQ7LFof3Flh/N3QAziulxnVwnqdh/WP+Y61Jy243ri0APlRK3eFi+4V2jrVtay99fwLwrFJqi1j7PaxwI02ecsw/M5z/PZkF4DoA2QAeF5HRTvZpL63t5YMn6XP2+bZ3jKv7ISK6lLCc6xqWc0TtYB9J6stqYG3y0SlKqWoAx0RkLmDvRzHWya5hAIq05bvdTM9XAK4REdsABcEikurF9DmmaaHDYR8CuNf2RkQitMVmEXH2hPkzWPtr6EUkBtbC8mt30iciOgBDlFIfw9qkKQxACNp+Lq7S2lqXPk8ioj6I5ZwVyzkiH2AgSX2WUqoS1iY1h0Xkd508zQIAPxeRHAB5AG52ss8zAH4rIgfQ/tO9lwF8ICIfK6UqYC2MN4jIIVib+3Sm07ur9K2AtSnQfgCOo+f9XwARWp7kAJjqkLZDog1C4ODvsDbbyQGwC9Y+LaVupk0PYJ2I5AI4AGC1Uuo8rE1vfmwbhKCdtLb2MYAMdwYhICLqD1jOsZwj8iVO/0FElzzhsOhERNSHsZyj3og1kkTUF9QDuFE8nKjZHdpT4RcBdDRgAxERUXdhOUe9DmskiYiIiIiIyCOskSQiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkCQiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkCQiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkCQiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkCQiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkCQiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkCQiIiIiIiKPMJAkIiIiIiIijzCQJCIiIiIiIo8wkCQiIiIiIiKPMJAkIiIiIiIijxh8nQAiokvF/v37BxoMhjUARoEP4oj6GguAwyaT6Z7x48eX+zoxRES9HQNJIiI3GQyGNXFxcSNjYmLO6XQ65ev0EJH3WCwWqaioyCgtLV0DYLav00NE1NvxiToRkftGxcTEVDOIJOp7dDqdiomJqYK1xQEREXWAgSQRkft0DCKJ+i7t95v/GxERuYF/LImIqEsuu+yy9I72mT9/ftL+/fsDAOCRRx6J8/T4oKCgy5ytf/jhh+OGDx+emZqampGenp6xa9euYABobm7Gfffdl5CUlDQqPT09Iz09PePhhx+2X/fUqVOG7OzsoYMHDx6dmZk5cty4celr164NB4Bt27aFhoaGjktPT88YNmxY5i9/+cv4jtInIuP/4z/+Y7Dt/RNPPBG7fPnyQY77pKenZ9x0003DOjoXACxfvnzQwIEDxyxdunRQx3tfNGnSpLT4+PjRFovFvm769OkptvzLy8szpqenZ7jKTyIiIncxkCQioi45cOBAQUf7vPXWWyfGjx/fAACrV69uEZi5c7wzH330UfCOHTvCc3Nz848ePZr/8ccfHx02bFgTACxZsiShpKTE78iRI3kFBQX5X375ZUFzc7MOACwWC7Kzs4dfe+21tadPn87Ny8s7snHjxh9OnTrlbzv3hAkTagsKCvIPHjx4ZNOmTVF79uwJai8t/v7+avv27RElJSVOxx745ptvAiwWC77++uuQ6upqt8reRYsWlf3xj38sdj9HrEJDQ80ffvhhCACcOXNGX15e7mfblpmZ2VhQUJDv6TmJiIhaYyBJRERdYqvd2rZtW+ikSZPSZs6cOWzo0KGZs2fPHmqrGZs0aVLap59+GrR48eKExsZGXXp6esbs2bOHOh5fVVWlu+qqq1IzMjJGpqamZqxbty68vesWFRX5RUZGmgIDAxUAxMfHm5KTk5tramp069evj1mzZs3JoKAgBQARERGWZ599thgAtm7dGurn56ceeuihCtu5UlNTmx5//PE2I3UOGDDAMnr06LqCggLj6tWro7KyslImTZqUlpSUNMqxplKv16u77rqr4je/+U2ss7SuXbs2ct68eZXXXXdd9fr169u9L2eWL18+aM6cOcnjx49PGzRo0OjXXnstfNGiRYNTU1Mzrr322hGNjY1i23fOnDln33jjjUgAWLduXXh2dvZ5T69HRETUEQaSRETkNUeOHAn885//fKqwsDDv5MmTRlvNmM2LL75YZDQaLQUFBflbtmw55rgtKCjI8v777xfm5+cf+eSTT44+9thjgx2baLZ2yy23VBcXF/snJyePuvPOOxPff//9EADIz883xsfHN0VERDg9ODc3N3DMmDF17txPaWmp/sCBA8Hjxo2rB4BDhw4Fb9mypTAvLy9vy5YtkZ9++qm9pvLBBx8sf/fddyMrKyv1rc+zefPmyIULF577yU9+cnbjxo2R7ly7tRMnThi/+OKLo++8807hokWLhk6bNq366NGj+QEBAZaNGzeG2fa74YYbar766qsQk8mEt99+O/Kuu+4625nrERERtYeBJBERec3o0aMvpKSkNOv1emRmZtZ9//33/h0fZWWxWGTp0qWDU1NTM6ZOnZpaXl7uf/r0aZfTVIWFhVkOHz6c/8ILL5yIiYkxLVy4MGX16tVRrfd7/vnno9LT0zPi4uLGFBYW+rXe/tOf/jQxLS0tY9SoUSNt6/bt2xcycuTIjKysrNQlS5aUTpgwoQEAJk+eXB0XF2cOCQlRs2bNOrd79257oBwZGWmZO3du5cqVKwc6nv/TTz8NioyMNI0YMaJp9uzZ1Xl5eUFlZWVtgs2OTJ8+vcpoNKpJkybVm81mue2226oBIDMzs/7YsWP2fDYYDGrSpEm1f/vb3yIbGhp0aWlpTZ5ei4iIqCMMJImIyGuMRqN9VFu9Xg+TySTt7e/opZdeiqysrDTk5uYeKSgoyI+Kimqur69vt5wyGAy46aabap577rni3/3udyc3b94ckZGR0VhSUuJ/7tw5HQAsWbKksqCgID80NNRsNptl9OjR9YcOHbLXJL7++usnd+/effTcuXP2oHXChAm1R44cyc/Lyzvi2ARWpOXttH7/6KOPlq1fvz76woUL9nS//vrrkT/88ENAQkLC6KSkpNEXLlzQr1u3LsLdfLGx5a1er4fBYFA6nfUSOp2uTT4vWLDg7KOPPpo4Z86cc55eh4iIyB0MJImIqEcZDAbl2KfPpqqqSh8dHd1sNBrV1q1bQ4uLi9utzczJyTHm5uYabe8PHDgQOHjw4KbQ0FDL7bfffubnP/95Yl1dnQCAyWRCc3OzAEB2dnZNY2OjrFq1KsZ2bG1trVvl4Z49ewaUlZXpa2trZfv27eFTpkypddweGxtrzs7OPrd+/fpoADCbzdi6dWvkwYMH84qKinKLiopyN2zYUPj22293qnmru2bMmFH7wAMPlPzsZz9js1YiIuoWDCSJiKhHLViwoGLkyJH2wXZs7rnnnrM5OTnBqampGa+99lrU0KFDG9o7T3V1tf6uu+4ampKSkpmamppRUFAQuGrVqmIAeP7554vi4uKa09PTM0eOHJkxceLE9Pnz559JSkpq1ul02Lp16/efffZZaEJCwujRo0ePvPPOO5NXrFhxuqO0jxkz5sLs2bNTMjMzM7Ozs89dd911bfpaPv7446Xnz583AMAHH3wQEhsb25ScnNxs237jjTfWFBYWBp44caJNM1tv0el0eOqpp8ri4+NN3XUNIiLq30Qpzq1NROSOnJyc42PHjj3j63SQb6xevTpq3759wWvXrj3Z3ddavnz5oJCQEPNTTz1V1h3nDwoKuqyuru5Ad5z7UpeTkxM9duzYZF+ng4iot2ONJBERUS8TEhJiXrt2bczSpUsHefO8eXl5xvT09IyoqKjmjvcmIiJyjTWSRERuYo0kUd/HGkkiIvewRpKIiIiIiIg8wkCSiIiIiIiIPMJAkoiIiIiIiDzCQJKIqBvd/MKetJtf2JPm63T0Si9PTcPLU/tl3tyx7Y60O7bd0S/vHQCOzZ2XdmzuvH57/0REfQEDSSKiS8ymTZsGJCcnj0pMTBz12GOPxbXevmLFiljb3IpXXXVV6tGjR/1t2/R6/fj09PSM9PT0jGnTpg3v2ZR3r47yZfXq1VERERFjbff/7LPPRvsind1l7ty5yZGRkWNHjBiR6Wy7xWLB3XffPSQxMXFUampqxp49e4J6Oo3dpbCw0O+KK65ITUlJyRw+fHjm008/PbD1Pn35/omIfIGBJBFRN1n31YnI/JLq4JzTVSGTfv3R6HVfnYjs6jlNJhOWLVuWuH379qNHjx7Ne+eddyL3798f4LjP+PHj6w4ePHjk6NGj+bfccsu5ZcuWDbZtMxqNloKCgvyCgoL8Xbt2FXY1PZ2295VIlOYGo/ibEPw+dTT2vtKlvHEnXwAgOzv7nO3+ly9f7pMReN/69q3IgnMFwYcrD4dM3Th19FvfvtXl7wUA/OxnPzuzZcuW71xtf/vtt8N++OGHgOPHjx/+y1/+cmLx4sWJ3riup85ueDOyoaAguCE3N+S7a68bfXbDm12+fz8/P/zhD384/f333+ft3bv3yCuvvDKw9effW+6fiKivYCBJRNQN1n11IvLpbflJzWYlAFBe0+j/9Lb8pK4Gk7t37w5OSkpqzMjIaAoICFBz5sw5u2nTpnDHfbKzs2tCQ0MtADB58uTakpISf6cn85W9r0Rix6NJsDQLAKC2zB87Hk3qSjDpTr70Bm99+1bkM3ufSTJZTAIAZ+rP+D+z95kkbwSTN954Y21MTIzJ1fb33nsvfMGCBZU6nQ5ZWVkXqqurDSdOnPDr6nU9cXbDm5HlK1cmodn62ZsqKvzLV65M6mowmZSU1Dx58uQ6AIiIiLCkpKTUnzx5ssX3vjfcPxFRX8JAkoioG6ze+V1Co8nS4m9so8miW73zu4SunPfUqVP+CQkJTbb3gwcPbioqKnIZKL700ksx06dPr7K9b2pq0o0aNWrk2LFj019//fXwrqSl0z5ZlQBTY8vyx9SowyerOp037ubLP/7xj/DU1NSMmTNnDissLOzxIOKvOX9NaDI3tbj3JnOT7q85f+3S98IdJSUlfsnJyfY8io+Pb+rpQKryxRcTVGPLz141NuoqX3zRa/f/7bff+ufn5wdNmTKl1nF9b7h/IqK+hIEkEVE3qKhpdBrcuVrfHV588cXInJycoCeffLLUtu677747dPjw4SMbNmz44ZFHHhmSl5dn7Kn02NWWO88DV+u9ZN68eedPnjyZe/To0fysrKzqO++8c2h3Xs+ZyvpKp/foan1fYzpzxul9ulrvqaqqKt2cOXNSVq5ceSoyMtLijXMSEZFzDCSJiLpBTKixyZP17hoyZEiLmrbTp0+3qImz2bx5c+jvf//7+O3btxcGBgYq2/qhQ4c2A0BGRkbTlVdeWfP111/3/IAjIQOd54Gr9W5wJ1/i4uLMtrxYtmzZmby8vB6/96jAKKf36Gq9N8XHxzcfP37cnkclJSX+SUlJzd19XUeG6Gin9+lqvScaGxtl1qxZKXPnzj27cOHC862394b7JyLqSxhIEhF1gweyRhQZDboWNSJGg87yQNaIoq6cd8qUKReOHz8eUFBQ4N/Q0CDvvvtu5K233nrecZ/PP/888P7770967733ChMSEux95ioqKvT19fUCACUlJYZ9+/aFjBkzpr4r6emUKQ8XwWBsWVtkMFow5eFO5407+eLYjHH9+vXhw4YNa+js9Tpr0dhFRf56/xb37q/3tywau6hL3wt3zJ49+/wbb7wRZbFYsHPnzuDQ0FBzTwdSUYsXF4mx5WcvRqMlavHiLt2/xWLB7bffnpSamtqwYsWKMmf79Ib7JyLqSwy+TgARUV9055VJZwHgya15yc1mJQNDjU0PZI0osq3vLG10ypMzZ85MNZvN+MlPfnJmwoQJDUuXLh00ceLECwsWLKh68MEHh9TV1ennzp2bAgCDBg1q2rVrV+HBgwcD7r333iQRgVIKS5cuLR0/fnyPB1OY+HNrHvzj4WRYmgUhsU2Y8nCRfX0nuJMvzzzzzMAdO3aE6/V6FR4ebnr11VePe+uW3DU/bf5ZAFj59cpkk8Uk0YHRTYvGLiqyre+K7OzsoV999VXouXPnDLGxsWMeeeSR4mZtUJuHHnqoYt68eVXvv/9+WFJS0qjAwEDLmjVrjnf1mp6KvOP2swBQ9pvfJKO5WQwxMU1RixcX2dZ31ocffhiyefPmqBEjRtSnp6dnAMCTTz5ZdOLECX+g99w/EVFfIkqpjvciIiLk5OQcHzt2rEdTRtz8wp40AHjvvsnfdk+qLmEvT7VOSP+Lj/td3tyx7Y40ANhw04Z+d+8AcGzuvDQAGPr2xl53/zk5OdFjx45N9nU6iIh6OwaSRERu6kwgSUSXFgaSRETuYR9JIiIiIiIi8ggDSSIiIiIiIvIIA0kiIvdZLBaL+DoRRNQ9tN9vzj9JROQGBpJERO47XFFREcZgkqjvsVgsUlFREQbgsK/TQkR0KeD0H0REbjKZTPeUlpauKS0tHQU+iCPqaywADptMpnt8nRAioksBR20lIiIiIiIij/CJOhEREREREXmEgSQRERERERF5hIEkEREREREReYSBJBEREREREXmEgSQRERERERF55P8DAzTeT6kNwf0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Create copies of the data sets and delete measurements with inhibitor.\n", "wt_control = copy.deepcopy(chymo_HSAwt)\n", "del wt_control.measurement_dict[\"m4\"]\n", "del wt_control.measurement_dict[\"m5\"]\n", "del wt_control.measurement_dict[\"m6\"]\n", "del wt_control.measurement_dict[\"m7\"]\n", "\n", "m3_control = copy.deepcopy(chymo_HSAM3)\n", "del m3_control.measurement_dict[\"m4\"]\n", "del m3_control.measurement_dict[\"m5\"]\n", "del m3_control.measurement_dict[\"m6\"]\n", "del m3_control.measurement_dict[\"m7\"]\n", "\n", "# Estimate kinetic parameters of the control reactions of the HSA wild-type data set.\n", "kinetics_wt_control = ParameterEstimator.from_EnzymeML(wt_control, \"s1\", \"product\")\n", "kinetics_wt_control.fit_models(stop_time_index=-1, display_output=False)\n", "print(\"Kinetic parameters of HSA(wt) chymotrypsin control reactions:\")\n", "display(kinetics_wt_control.result_dict\\\n", " .style.set_table_attributes('style=\"font-size: 12px\"'))\n", "\n", "\n", "# Estimate kinetic parameters of the control reactions of the HSA(M3) data set.\n", "kinetics_m3_control = ParameterEstimator.from_EnzymeML(m3_control, \"s1\", \"product\")\n", "kinetics_m3_control.fit_models(stop_time_index=-1, display_output=False)\n", "print(\"\\nKinetic parameters of HSA(M3) chymotrypsin control reactions:\")\n", "display(kinetics_m3_control.result_dict\\\n", " .style.set_table_attributes('style=\"font-size: 12px\"'))\n", "\n", "\n", "fig, axes = plt.subplots(1,2, figsize=(12.8,4.8), sharey=True, sharex=True)\n", "for e, (doc, ax, title) in enumerate(zip([kinetics_wt_control ,kinetics_m3_control], axes.flatten(), [\"chymotrypsin control reactions HSA(wt)\", \"chymotrypsin control reactions HSA(M3)\"])):\n", " doc.visualize(ax=ax, title=title)\n", " ax.set_ylabel(\"4-nitroanilin [mM]\")\n", " ax.set_xlabel(\"time after reaction start [min]\")\n", " ax.set_xticks([5, 10, 15, 20])\n", " ax.text(0, 1.1, string.ascii_uppercase[e], transform=ax.transAxes, \n", " size=20, weight='bold')\n", "\n", "handles, labels = ax.get_legend_handles_labels()\n", "\n", "fig.legend(handles, labels, loc=\"lower center\", ncol=4, title=\"initial SGGPpNA [mM]\", bbox_to_anchor=(0.5,-0.15))\n", "plt.tight_layout()\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "_Fig. 3: Measurement data and fitted irreversible Michaelis-Menten model for chymotrypsin reactions without HSA inhibitor._\n", "\n", "The two datasets were fitted against all kinetic models, which are displayed in the tables above. \n", "Each dataset is best described by the irreversible Michaelis-Menten model in terms of AIC and standard deviation on the estimated parameters. Models with product or substrate inhibition resulted in large uncertainties above 80% on the parameter estimates. Therefore, irreversible Michaelis-Menten model was utilized for comparison of parameters. $\\frac{k_{cat}}{K_{m}}$ was estimated to be 25.353 min-1mM-1 ± 8.57% for the control reaction of the HSA(WT)-huFc data set and 24.776 min-1mM-1 ± 4.35% for the HSA(M3)-huFc data set. As a result, the two experiments showed to be comparable, since the catalytic efficiency differs less than 3 % between the two data sets.\n", "\n", "## Determination and comparison of $K_{i}$\n", "\n", "Experimental data of chymotrypsin inhibition by HSA(M3)-huFc contained negative absorption values for the first measurement point, presumably sourcing from an incorrect blank measurement. Therefore, only measurement data from the second data point (minute 5 and onward) was considered for parameter estimation.\n", "Parameter estimates for all applied kinetic models are displayed in the output below and visualized in Fig. 4." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "hide_input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Kinetic parameters estimates for all models of chymotrypsin inhibition by HSA(WT)-huFc:\n" ] }, { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 AICkcat / Km [1/min * 1/mmole / l]Ki competitive [mmole / l]Ki uncompetitive [mmole / l]
competitive inhibition-310022.253 +/- 6.97%0.460 +/- 27.24%-
non-competitive inhibition-309822.403 +/- 7.00%0.449 +/- 27.64%79.193 +/- 516.52%
irreversible Michaelis Menten-308821.622 +/- 7.15%--
uncompetitive inhibition-308721.631 +/- 7.63%-0.696 +/- 88.99%
partially competitive inhibition-308421.643 +/- 8.23%796.196 +/- 1075.02%992.685 +/- 48.74%
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Kinetic parameters estimates for all models of chymotrypsin inhibition by HSA(M3)-huFc:\n" ] }, { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 AICkcat / Km [1/min * 1/mmole / l]Ki competitive [mmole / l]Ki uncompetitive [mmole / l]
competitive inhibition-80823.031 +/- 10.48%0.059 +/- 8.51%-
non-competitive inhibition-80623.002 +/- 10.89%0.060 +/- 9.04%44.965 +/- 302.77%
uncompetitive inhibition-75119.297 +/- 21.77%-0.035 +/- 21.33%
irreversible Michaelis Menten-71318.512 +/- 24.41%--
partially competitive inhibition-70918.544 +/- 27.64%569.354 +/- 57.96%925.096 +/- 11733.22%
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5IAAAGcCAYAAACr5J9LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAAD0sElEQVR4nOz9eXyU5b34/7+uTCbrJJN12Pd9SwIqoEBwQVQkYdHautaFaq32KEdtq1VrPed0Oz3FnlPP99d+2p5z2tPTnh4NJAO4WwmigApJCCiL7ATIQjLJTDKZ7fr9cU+GJISQhEzW9/Px4EHmnvu+55oQcs37Wt5vpbVGCCGEEEIIIYToqIjeboAQQgghhBBCiP5FAkkhhBBCCCGEEJ0igaQQQgghhBBCiE6RQFIIIYQQQgghRKdIICmEEEIIIYQQolMkkBRCCCGEEEII0SkSSAohhBBCCCGE6JQBH0gqpfKVUrrVn5m93S4hhBCiq5RSY9vo27RSKqCUcimlDimlXlNKrejttgohhBiYBnQgqZQaCixr46mHerotQgghRA9QQBwwAbgN2KCU+lHvNkkIIcRApLTWvd2GsFFKfRf4SRtPVQIjtNaeHm6SEEIIcdmUUmOBI80OfQr8L0YgORZjwDQ6+JwfGKK1rurBJgohhBjgInu7AWH2YLOvDwCTg1+nAbnAaz3eIiGEEKL77dVa/7zpgVIqADwefGgCJgESSAohhOg2A3Zpq1JqEecDR4AXgf3NHsvyViGEEAOKMowBrm711OneaI8QQoiBa8AGkrQMFOuAAuDPzY4tVUqN7NkmCSGEEGHxdaWUBgLAUeCKZs/9SWt9rFdaJYQQYsAakIGkUioB+EqzQxu01g3A/zQ7FgHc35PtEkIIIXrYNuDR3m6EEEKIgWdABpLA1zCy1jX5E4DW+iBGQoImDyilVE82TAghhAiDT4Fngn9+zvmlrAuAbUqp1N5qmBBCiIFpoAaSzZe1lgPvNnvcfFZyPHBtTzRICCGECKO9WuufB/88AywCmtKyzwKe672mCSGEGIgGXNZWpdQMYF6zQzbA187E40PA38LdLiGEEKKnaK2/VEpVAunBQ9f1ZnuEEEIMPANxRrKz2VhXK6WsYWmJEEII0QuUUuMxSl01MfdWW4QQQgxMA2pGUikVBdzb7FA5bc82pgPXB7+OBe4C/r/wtk4IIYQImxlKqaeDX9sw+rXmS3E+7PkmCSGEGMiU1vrSZ/UTSqnbgf9rdug5rfWP2zgvDiMRQWLw0Kda66t6oIlCCCHEZVNKjQWOdPD0o8ACrXVZ2BokhBBi0BloS1ubL2v1Af/R1kla63qCmVyDrlRKZYSzYUIIIUQP8QFVwEfA88BsCSKFEEJ0twE1IymEEEIIIYQQIvwG2oykEEIIIYQQQogwk0BSCCGEEEIIIUSnSCAphBBCCCGEEKJTJJAUQgghhBBCCNEpEkgKIYQQQgghhOgUCSSFEEIIIYQQQnSKBJJCCCGEEEIIITpFAkkhhBBCCCGEEJ0igaToMKXU/UqpD3u7Hb1JKfWGUurrXbx2r1Lq2g6ee1QpteQizy1SSu3vyrltPD9aKeVUSpk60q7OUEpppdTE7r5vuCil0pVSXyilYsNw728rpX56iXNeUkr9d3e/thCic6Svk76uM6SvC913p1JqxiXOuei/oeifJJAU/Y5S6j+VUv/YG6+ttb5Fa/1fXbx2htb6g25ow1at9ZSunNv6l7jW+rjW2qK19l9uu8LlYh/qmr8XpVSUUupflFIngx8WjiqlXmnjmpeCnf68Nl7qe8B/aq0blFJ3KqU+b3XtOxc59r3gazb9CSilGpo9vhv4f8DdSinbZXwrLkopdW3wdZu3wx6O1xJC9Azp66SvCx4PW18XPPeD4LmZre6xPnj82uDjryml9iulHEqpcqXUfymlEptd8nPg5S6+/UsK/n/wtOrnvhqu1xMdI4GkGHCUUpG93QbR454FrgTmAgnAtcCu5icopRRwH3Au+Hfz56KBrwNNM4KFwFSlVHrw+UggE4htdexqoDD4AcWitbYAx4GcZsf+pLV2A2+0ft1uVta8HVrrnDC+lhCil0lfNyh1d1/X5EDzc5VSqRj9W0Wzc7YBC7TWVmA8EAk0H+goAK5TSg3t2lvrkJ+16uf+N4yvJTpAAklxAaXUKKVUnlKqQilVpZT6Vavnf66UqlZKHVFK3RI89hWl1Getzvt7pVR+8Ov/VEr9uzKWyziVUtuUUkOVUq8E7/WFUmp2s2unBUfJapSxTCY3ePxh4G7gO81nXYKjct9VSpUALqXUM0qp11u151+VUr8Mfv2BUurHyliKUauUyldKpQSfi1FK/XfwvdcopT5RSg1pdt2a4Nf3K6U+bOv7cZHva/NRxZeUUn9VSv1BKVUXfI9XtrokSylVEhz9+1+lVEzw2muVUidbnXuVUmpfsB3/0da5Sqk/AqMBe/B79x2l1NjgiGNk8JzhSqkCpdQ5pdQhpdQ3mrW/I21ubZlS6rBSqlIp9c9KqQhljKieU0rNanZvm1KqvilI64KrgPVa6zJtOKq1/kOrcxYBw4C/A76mlIpq9tw8oEZrfRJAa30KOAxkB5+fA+wFtrQ6FgF80sE2fgDceolzoi72/VWtlk+pDs5WKKVMSqnnlFJfBu/7mVJqVAfbLMSAJX2d9HWDva9r5k/AV9X5pb93AusBT9MJWusTWuvKZtf4gYnNnncDnwE3XeI9XOzf+4IZ2db93sVc6v+yCB8JJEULwV8iG4FjwFhgBPCXZqfMA/YDacDPgN8ppRTGSNQ4pdS0ZufeCzT/BXcH8Hzw2kbgY4yRtDTgNeAXwTaYATvwNmADvg38SSk1RWv9G4xfeD9rY9blTowP6kkYo203K6WSgveMBL7Wqj33AQ9i/ML1Af8aPP51wAqMAlKBbwINF/mWXez70RG5GN/bJIzvX+tffHcANwPjgAzg/nbudTfGL+8JwGSM73MLWut7aTlb9rM27vMX4CQwHLgd+JFS6vpOtLm1VRijp3OAFcCDWmtP8B73NDvvTuA9rXXFhbfokO3A3yulvqWUmnWRf4OvY/xc/TX4uPnPziyMf8fmCjkfNGYDW4EPWx3brrX2drCNn2PMarans9/fjvh7jO/vMiAR42e+vhvuK0S/JX0dIH2d9HXnlQH7gKXBx/fR8mcIAKXUQqWUA6gDbgNeaXVKR/q5zvx7X1IH/i+LMJJAUrQ2F+MX6zNaa5fW2q21bj5CdExr/f+C+wz+C6NjGqK1bgT+l+AvTGVsuB6L8Z+7yXqt9WfBUav1gFtr/Yfgvf4XaBqlnQ9YgJ9orT1a6/eD97nzEm3/1+CIWYPW+jRGIPCV4HM3A5Va6+YjyX/UWpdqrV3AC8AdwV9IXoxOdaLW2h9sc+1FXrPN78cl2tnkQ6315uC1f+TCX77/Ghx1PIfRKWS1c69fBd/7OeCfuPT36gLKmKVaAHw3+O9eBPyWlktjLtXm1n6qtT6ntT6O0eE0teu/gDubdYL3Bu93MfODI+ahPxgjzk1+DPwU40PGp8Ap1SxRhFIqDuNn4X+Cgd9rrd5XEkbH2Fzz2cdFGIHk1lbHtrTT5tbqMD60taez39/mhrf6Ht0RPL4GeF5rvT84gl2sta7qxH2FGIikr5O+Tvq6lv4A3KeUmgokaa0/bn2C1vpDbSxtHQn8M3C01Sl1wddoT2f+vVt7utn3pml29FL/l0UYSSApWhuF0WH4LvL8maYvtNZNsxqW4N//BdwV/IV5L/DXYKfb5GyzrxvaeNx0n+HACa11oNnzxzBGmdpzotXj/+L8SOA9XPjLu/n5xwAzxmjrH4G3gL8opcqUUj8Ljhy3pb3vx6WcafZ1PRCjWu55af18e/dt/V6Gd7ANzQ0Hzmmtm3cyrb/vl2pzh9qltd4RvP7aYKc1EWPU92K2a62Tmv/BGHEmeD+/1vpVrfUCjE7sn4DfN5s1WIUxEr85+PhPwC3NlhdVY+w3aa4QyFBKJWN84PtYa/0FMCx4bGHwnI5KABwASqm71flkAW80O6ez39/mylp9j5pGo0cBX3ainUIMBtLXSV8nfV1LecD1wOO0H+w2bf94kwtn/hKAGghl/m2edK5JZ/69W/t5s+9NWvDYpf4vizCSQFK0dgIY3YkPryFa6+0Y6+kXAXdxiV9E7SgDRimlmv98jgZONb3UxZrQ6vEGjEBgJrAc4xdqc833iY3GGJ2t1Fp7tdY/1FpPB64JXhvOJCndofV7KbvIeRf73hG8JkUp1byTaf597+52NX34uRd4LTh6f9mCo/SvYnSY04OHv47RWR1XSp0B/g/jw9RdwedLMJZJNb/P4WB7HwaOa62dwac+Dh6zYCwz6qhpQHHw3n/S55MFXHSvUSv1QFyzxx1NaHACYxmYEOI86eukr5O+ruX96jGSwj1Kx36mI7mwb2nez93SrJ9r/TPZFhfN+jjV8aQ9Xf6/LC6fBJKitZ3AaeAnSql4ZWzGX9CJ6/+AsZfAexlLC5pG8L6jlDIrI/V0DudHvs5iZAxrV/CX9WvA/wA7g0tOmrtHKTU9uBTkZYxf8H6l1HXBvQcmoBaj0w3Qtz2mlBqpjCQK38dYPtWWi37vtNYngI+AHwf/3TOAh7gwu1tnPKOUSg4uJXqiVbv+G2P09B7a2IvRGUqpJ5WRbCFWKRUZXOqTAOxWSo0AbsD4kJQV/JOJsTyo6UPTTiApeG5zWzH2GG5tduzD4LFPdTB9egctxuiku6oIYxbEpJS6OXi/jvgt8A9KqUnKkKGMjHxCDGbS10lfJ33dhZ4DFmutj7bx2ncrpUYHvx6DMRv6XrPnY4ArgHe6+PaKgRlKqazgvV7q4HWX+39ZXAYJJEULwf0AORjLL45jbEbvTJ2ePwIzuYxfyNrYoJ4D3AJUAv8O3BdcVgjwO2B6cI38hkvc7r8wNpe3Nbr2R+A/MZZZxGBkOANjpuc1jI71c4x9cF0dce4p/4ORsOEwxjLGi2Xz/DHwfPB793Qbz9+Jsd+nDGNvzw+01u9eRrvyMbK4FQGbMP7tgFBnvgtj5HhrWxd3Qj3wLxj/lpXAY8BtwVnFe4EirfXbWuszTX8wEk5kKKVmBn/m/pOWSRHA+Le3YQSPTbYGj3V4WWuwU1yG8fPYVU9g/L+owdgfs6GD1/0CI+nC2xg/078DurUQtRD9jfR1gPR1Y5G+roXg3sWLDYxMBz5SSrkwSoHsB77R7Pkc4AOt9cVmidultT6AMdDxLnCQlv1ue9dd7v9lcRmU1u3N/gvROUqpWKAcmKO1PtgH2jMa+AIYqpslEVBKfQD8t9b6t73VNgFKqd9j7O27IPNeL7QlHaOTn93JmcaO3PvbwCit9Xe6875CiN4hfZ3ojMHQ1ymldgAPaa1Lu+ueou+T9cSiuz0KfNJHOtYIjCWIf9EXz0QneolSaiywmvMZDHuVNtKxTw3Tvf8tHPcVQvQa6etEhwyWvk5rPa+77yn6PgkkRbdRSh0FFLCyd1sCSql4jD0SxzDSoYs+RCn1D8Ba4Mda6yO93R4hhOgo6etER0lfJwY6WdoqhBBCCCGEEKJTJNmOEEIIIYQQQohOkUBSCCGEEEIIIUSnDJg9kmlpaXrs2LG93QwhhBCDyGeffVaptU7vqdeTvk4IIURPaq+fGzCB5NixY/n00097uxlCCCEGEaXUsZ58PenrhBBC9KT2+jlZ2iqEEEIIIYQQolMkkBRCCCGEEEII0SkSSAohhBBCCCGE6BQJJIUQQgghhBBCdIoEkkIIIYQQQgghOkUCSSGEEEIIIYQQnSKBpBBCCCGEEEKITpFAUgghhBBCCCFEp0ggKYQQQgghhBCiUySQFEIIMWgcu/c+jt17X283QwghhOj3JJAUQgghhBBCCNEpEkgKIYQQQgghhOgUCSSFEEIIIYQQQnSKBJJCCCGEEEIIITpFAkkhhBBCCCGEEJ0igaQQQgghhBBCiE6RQFIIIYQQQgghRKdIICmEEEIIIYQQolMkkBRCCCGEEEII0SlhDSSVUjcrpfYrpQ4ppb7XxvPZSqldSimfUur2ZsezlFIfK6X2KqVKlFJfDWc7hRBC9L5j997HsXvv6+1mCCGEEKIDwhZIKqVMwKvALcB04E6l1PRWpx0H7gf+p9XxeuA+rfUM4GbgFaVUUrjaKoQQQgghhBCi4yLDeO+5wCGt9WEApdRfgBXAvqYTtNZHg88Fml+otT7Q7OsypVQ5kA7UhLG9QgghhBBCCCE6IJxLW0cAJ5o9Phk81ilKqblAFPBlG889rJT6VCn1aUVFRZcbKoQQQvRV0tcJIYToi/p0sh2l1DDgj8ADWutA6+e11r/RWl+ptb4yPT295xsohBBChJn0dUIIIfqicAaSp4BRzR6PDB7rEKVUIrAJ+L7Wens3t00IIYQQQgghRBeFM5D8BJiklBqnlIoCvgYUdOTC4PnrgT9orV8LYxuFEEIIIYQQQnRS2AJJrbUPeBx4C/gc+KvWeq9S6mWlVC6AUuoqpdRJ4CvAr5VSe4OX3wFkA/crpYqCf7LC1VYhhBBCCCGEEB0XzqytaK03A5tbHXux2defYCx5bX3dfwP/Hc62CSGEGHy01hC4YMu9EEIIIToprIGkEEKIgeHYvfcBMOaPf+jllnSN5+RJHBvyce/Zgyk5ubebI4QQQvR7EkgKIYQYkAL19dS+9TaO9eup37kTgIjERCIsFgBc23fgLt1D6po1vdlMIYQQol+SQFIIIcSAobWm4dNPqVm/gbo33yRQX495zGist62m7t330B4PvrNncW3fwam1axmxbl1vN1kIIYTolySQFEII0e95Tp7Ckb8Bx4Z8vCdOEBEXR8KyW0hatYrYOXNQSuHKyeX4Aw+gzeZQEBk/f15vN10IIYTolySQFEII0S8F6uupe+cdatZvoH67UW447ur5pH/7cRKWLCEiLq7F+b6KctAaPB4CUVHGYyGEEEJ0iQSSQggh+g2tNQ2ffUbN+vXUvRFcujpqFGl/922SVqzAPGJEm9c57HbKnvv++fs4naHH1pycHmm7EEIIMZBIICmEEKLP85aV4cjPp2b9BrzHj6Pi4ki8+WaSVq8i9oorUEq1e/2Zn/wUvN5WN/Vy5ic/lUBSCCGE6AIJJIUQQvRJgYaG4NLV9dRv3wFaEzdvHmnfepTEG28kIj6+4/eqqurUcSGEEEK0TwJJIYQQfYbWmvpdu3CsX0/t5jcIuFyYR44k7bHHsK5cSdTItpeuXuxeDUVFOAoKQCljf2QrkcOHd2fzhRBCiEFDAkkhhOjnjt17HwBj/viHXm5J13lPn8ZbVoavspJjd91tLF296Sasq1YSd+WVqIiIDt/Lc/w4jgI7DnsB3mPHUTExxGRm0rhvH9rjCZ2nYmKwrX0yDO9GCCGEGPgkkBRCCNErAm43de+8i2P9elwffwxaE5GQwNAf/IDEm5Z2aumqv6aG2jfewFFgp2H3blDKWAb7yDdJWHojJosFh93O6e8/j/Z4iBw+HNvaJ2V/pBBCCNFFEkgKIYToMaHlpus3ULt5MwGnk4iEBBJzc/EcPkxETAxJq1fh2r4Dd+keUtesuei9Ah4Pzg8+wFFQgHNLIXi9RE+aSPpTf491+XLMw4a1ON+ak0PNX/8P6N+zt0IIIURfIIGkEEKIsPOePYsjvwDH+vV4jhxBxcSQeNNSrKtWobXm1OPfJuByAbB/wUJwuxn56qsX3EdrTcPu3TjyC6h9800CDgemtDRS7roL64pcoqdNu2QGVyGEEEJcPgkkhRBChEWgsRHne+9Rs34Drm3bIBAg9oorGPbQgyTcfDMmiwUwajwGmu1dDFRVgdmMr6I8dMxz9Ghw36Md74kTqJgYEpYswboil/irr0ZFSncmhBBicNM+H66Pt1P3/nsMff55lMkU1teTnlcIIUS30VrjLi2lJi+P2k2bCdTWEjl0KKkPf4OklSuJGjv2gmvK173SZo3H8n/5F/x1ddTmF9BQXGzse5w/j7RvfYuEG2/EZOn4HkohhBBiIGrqdx12O7Wb38BfWUlEQgIpd99N9MSJYX1tCSSFEEJcNl9FBY6CAmrWr8dz6EtUdDQJN95I0upVxM2b1+6oqO/06baPnznL2Zf/gehJk7A9/RSJy5djHjo0XG9BCCGE6Dc8x48bwaN9I56jR1FmM1FTpoDfj7+mhuMPPxL2pHISSAohhOiSgMeD8/2/4Vi/HueHH4LfT2xWFkNf/iGJt9yCKSGhQ/eJSEkmUHXuguMqJoaxf/4foqdOlX2PQgghBj3fuXPUbn6DWrvdWKkDxF11FSkPPQiBAGd//BO0222cW1bG6RdeBAhbMCmBpBBCiA7TWuPetw9H3npqN27E73AQOWQIqQ89hHXlSqLHj+vwvYx9jwXo+oYLnzSbsVx/PTHTpnVj64UQQoj+JVBfT9177+PYaMf14Tbw+4mePNlYqXPrraEM5QevvyEURDbRbjfl616RQFIIIUTv0V4vvqoqjqxYSeOBA6ioKBKW3IB11Wrir7m6wxv6fdXV1G7ejKOgAHdxCShF/NXzMY8ajSMvD+31So1HIYQQg1pT0hyHvYC6d99D19cb+QYeuJ/EnBxipky54JqLbhO5yPHuIIGkEEKINmmvF+eWLdSs32AsodGamIwMhr70A2PpqtXaofsEGhtx/i1Y77GwEHw+YzT1maeNfY9DhgDgOXwYkBqPQgghBp9Q0pwCO7WbN+OvqiIiIQHrrctIzMkh7sorURERF70+ctgwfGVlbR4PFwkkhRAiTI7dex/Q/wIj9/79OPLycNg34j93DmJjQCnQGl9lJd7Tp6n5v/8jdc2ai95Da03Drl3n6z3W1hKZnk7KvfdiXZFLzNSpPfiOhBBCiL4plDSnwI7n2DGU2Yzl2mtJzFmOZfFiIqKjO3Qf29onOf3Ciy2Wt6qYGGxrnwxTyyWQFEIIQXDJ6cZN1KzPo3Hf50ZHdv31EKGoe+PN8+eVlVH169+Q+sjDbd6nad+jo8CO9+RJVGwsCTcuwZq7gvir54e9ppUQQgjR1zUlzXHYg9s8gLi5c0lZ8xCJS5d2eMVPc03bQcrXvYLv9Gkihw2TrK1CCCHCQ/t8OLduxbF+A3V/+xt4vcTMmMGQ558n8dZlRCYnc/D6G9q81mHfiG3tWuDi+x7Tv/04CUuWEBEv9R6FEEIMbm0mzZky5YKkOZfDmpPTo/kFJJAUQohBpvHQIWry1uMoKMBfWYkpJYWUu+7CunrVBRv429u8X/vW2zjy89vd9yiEEEIMVkbSnI9x2O3nk+YMG0bqgw+QuDyHmCmTe7uJl0UCSSGEGAT8Dge1mzdTk7ce9549EBmJ5drFJK1ahSU7G2U2t3ndxTbvA5x64gnZ9yiEEEI0o7XGvWcPDvvG80lzEhOx3noriTnLL5k0pz+RQFIIIQYo7ffj+ugjHOvXGyOhHg/RU6Yw5Nnvkbh8OZGpqZe8hzVnOVW//s0Fx80TJzD0u9+TfY9CCCEE4Dl2zAge7c2S5lx33fmkOVFRvd3EbieBpBBCDDCNh4/gWL8eR34+vvJyTFYrSXfcQdLqVURPm4ZS6pL38FVXU/vGGzgK7C2Om5KSSFy9CnNKCpaFC8L1FoQQQog+z1dVZSTN2WgP5QiImzuX1G+sIWHpUkyJib3dxLAKayCplLoZ+CVgAn6rtf5Jq+ezgVeADOBrWuvXmj33deD54MN/1Fr/VzjbKoQQ/Zn2+aj+619x5K2noagITCYsixZh/f73sVx3bYdGQgMeD84PgvUetxSC10v05Mmk3HM3tW+/Q0RUVL8rZSKEEEJ0p1DSHHsBrm0fnU+a88zTRtKcoUN7u4k9JmyBpFLKBLwK3AicBD5RShVorfc1O+04cD/wdKtrU4AfAFcCGvgseG11uNorhBD9jQ4EKH/lFeo/+wwCARp278Zks2F75hkSc5ZjttkufQ+tadhdhCM/36j36HBgSk8j5Z57Wux7dH6wJdxvRwghhOiTQklzCuzUvdc8ac6DJOYsJ2Zy/06a01XhnJGcCxzSWh8GUEr9BVgBhAJJrfXR4HOBVtfeBLyjtT4XfP4d4Gbgz2FsrxBiEDl2730A/XKGzXP8OI4NG6j8/X9As8LDAP7qahr27iX1oQcvfY/8Ahx2O97jx416j0uWYM3NNfY9RsrOByGEEINXe0lzrLk5xF5xxYBJmtNV4fykMAI40ezxSWDeZVw7ovVJSqmHgYcBRo8e3bVWCiFEPxBwuYxyG3l51H/6KSgFbQV7Xi+uHTvavIe/pobaN9/EkV9Aw+7dxl6O+fNIe/RREm68EZNF6j32RdLXCSFEz7kgaU5UFJZrr8Wam0N8dvaATJrTVf16yFlr/RvgNwBXXnml7uXmCCFEt9Ja0/Dpp9Tkraf2rbfQ9fVEjRlD+tq1WFfkcui669u8LnDu3Pl7eDw4Cwtx5Bfg/OADtNdL9KSJpD/191hzcgbVXo7+Svo6IYQIr8GeNKerwhlIngJGNXs8Mniso9de2+raD7qlVUII0cd5y8qo2bABx/oNeE+cICI+Huuty7CuWk3s7KxQ1tWL1XiMHDaUhqIiHAUF1G7ajN/hwJSWRvJdd2FdkdvhzK0DUX9cyiyEEKL7GUlz3sNht59PmjN16qBMmtNV4QwkPwEmKaXGYQSGXwPu6uC1bwE/UkolBx8vBZ7t/iYKIUTfEGhooO7dd6nJy6N++w7Qmrj580l//DESbryRiLi4C66xrX2Ssue+D17v+YMREehGD0e/dicqJoaEG27AuiKX+GuukX2PQgghBjXt8xn1le0bzyfNGS5Jc7oqbJ8qtNY+pdTjGEGhCfi91nqvUupl4FOtdYFS6ipgPZAM5Cilfqi1nqG1PqeU+geMYBTg5abEO0IIMVBorY2Zw/UbqN28mYDTiXnECNIeewzrypVEjbxga3gLkek2lNmM9vshEMxZFggQmZ6O7amnSFh6IyaLpQfeiRBCCNE3hZLmFNipfeMNI2mO1Yp1+XKsOcslac5lCOvwtNZ6M7C51bEXm339Ccay1bau/T3w+3C2TwgheoP3bDmOgnwc6zfgOXwYFRtL4tKlWFevJu6qKy/ZoWmvF+fWDyl/5RW0xwOBAComhrRvfQvzyBH4yspIWr2qh96NEEII0fd4jh7FYd+IY6Md77HjRtKc667DmrNckuZ0E1nnJIQQPSDg8eB8/31q8vJwfbgNAgFir7iCYf/0jyTcdPMlM6ZqrXGXluLYkG+kIa+uxpSSQvJdd9Lw6WeouDjSHv5GD70bIYQQou8JJc2x23GXBJPmzJtH2sMPG0lzEhJ6u4kDigSSQggRBg67nYbiYrTHw/45VxDQGhoaiBw6lNSHv0HSqlVEjRlzyft4T53CYbfjyC/Ac+QIKiqKhCU3kJibi2XBApTZHKqJKYQQQgw2oaQ5BXZcHzVPmvMMibcuk6Q5YSSBpBBCdLNzf/4zZ//pR+DzAUYnh8lEypo12NY+iTKZ2r3e73RS99ZbODbkU/+JsVU87sorSX3oQRJuuklGVIUQQgxqLZLmvPsuuqHBSJrz0ENYc5YTPWlSbzdxUJBAUgghuoH2enEWFlKTtx7ne+9deILfT83//i9Dnn6q7et9PlzbtuHILzAyyTU2EjV2LOlPPkHi8pxLJt4RQgghBjKtNe6SEhz2jcYWj3PnjKQ5OTlYc3OInTNHkub0MAkkhRB9TtNSzf5Q88+9/wCOvDwcdjv+c+cwpadd9NxAXV2Lx1pr3Pv2UVtQgGPjJvxVVZiSkki67TasK1cQM2vWoKr32B/+vYUQQvSsiybNyc0hftEiSZrTiySQFEKITvLX1ODYtAlH3nrce/eC2UzCtddiXb0Ky6JFHFp6E76ysguuixw+HADvmTPBfY/5eA59iTKbjU5xRS6WRYtQ0ikKIYQYxHyVlUbSnI0bWyXNecQobSVbPC6qJwfjJZAUQogO0H4/ro8+oiYvD+e776G9XqKnTmXIc8+SmJNDZHJy6Fzb2ic5/cKLaLc7dEzFxBC/cCHHHniA+u07QGti58xh6EsvkXjLzZis1t54W0IIIUSfEHC5qHv//ZZJc6ZNw/ad7xhJc4YM6e0milYkkBRCiHY0HjmCI289jvx8fOXlxtLTr32NpNWriJk2rc1rrDk5NB46RNWvfxM6pr1eHH/9K+bRo0l77DGsuTlEjR7dU29DCCGE6HNCSXMK7EZ+gIYGzMOHS9KcfkICSSGEaMXvdFL7xhs48tbTsHs3RERgWbQI6/e/j+W6ay+5H6P6/17j3H/+F5hM4Pej4uLA78f2ve+RfM/dg2rfoxBCCNHcRZPm5OYaSXNmz5akOf2EBJJCCAHoQID6nZ/gWJ9H7Vtvo91uosaPx/b0UyTm5mK22dq93lteTu3GTTgKCmj84gswmTAlJGBKTWXc+jwadu3GXbpHgkghhBCDUptJc66/HmvOcskP0E9JICmEGHQcdjsNxcVoj4eD2YuJycykcd8+vKdOEWGxYF2xwli6mpHRbuAXaGig7t33cOTnG/s5AgFiMjMY8sLzJC5bxqm/ewKAiKgo4ufPI37+vJ56i0IIIUSvazNpznxJmjNQSCAphBhUHHa7kQjH4wHAV16O8513iJo0keH//M8k3LiEiJiYi14fmrnMz6furbcI1Ncb+zkeeRhrTi7R48f11FvpUVKaQwghREcEXC7q3nsPh32jJM3pQVW//S0xM2e1OObavgN36R5S16wJy2tKICmEGBS01jTsLuL0D15qkU21ScBVjzVn+UWvb/zySxz5BTjsdnynTxMRH0/Csluw5uYSd+WVsp9DCCHEoKW9XiNpjn1jy6Q5a9YYSXMmTuztJg54MTNncWrtWiJtNkyJibi27+DU2rWMWLcubK8pgaQQYkDzni3HkZ+PY/16PEeOXPS8tuo++s6dC+17dJeWgslE/MIFDHnmaSzXX9/uzKUQQggxkGmtcRcXG0lz3ngD/7lzmKxWrCtyseZI0pyeFj9/HiPWreP4mjVE2myhIDKc22okkBRCdEpPFrrtqoDHg/P996nJy8P14TYIBIi94gqGrVnD2Z//nEB19QXXRKSmGtc2NuL8299w5Bfg3LoVfD6ip09jyLPfI/HWW4lMS+vptyOEEEL0GY1HjlBr34hj40a8x4+joqOxXH8d1pwcLAsXStKcXhQ/fx6RNhu+sjLSvvVo2HMzSCAphBgQtNa49+3Dkbee2o0b8TscRA4dSuo3vkHSqpVEjR0LgIoyU/bc98HrPX+x2UzyV+/g9AsvUvvmmwTq6ogcMoTU+79OYm4uMZMn986bEkIIIfoAI2nOZhz2jbj37DmfNOeb3zSS5lgsvd1EgbEn0ldeTuTw4VT/+S/EzQ1voj8JJIUQ/Zrv3Dlq7XZq8tbTuH8/KiqKhCVLsK5eTfzV81EmU4vzrTk5AJQ98x3jgNlMhMVC1b//f6i4OBJvvBHrilzi5s274FohhBBisAi4XNS9+66RNOfjj42kOdOnYfvud0lctgzzkPbLYome1bQnMnrCBEyJiaQ99ljYl7e2G0gqpUo6cI8KrfUN3dQeIYS4JO3z4SzcimN9HnUfbAGvl5hZsxj6gxdJXLYMk9V60Wv9NTU0lJaeP+D1EjV8OCnf+y4JS5YQER/fA++ge/XlZcbCIP2pEKI/CCXNKbBT9/77RtKcESMkaU4/4C7dw4h166h89VW0zxfaM+ku3dM7gSRgApa187wCCrqvOUIIcXGNhw5Rk7ceR0EB/spKTKmppNxzD9ZVK9tdfqo9Hpxbt+LYkE/d+++D3w9RUZhtNtKfeoqzL79M5JCh/TKIFP2G9KdCiD4plDSnwG4kzamuPp80JzfXSJrTTk1l0fu030/cVVfhLNyKe98+Ai4XvsrKsNewvlQg+YjW+lh7JyilvtWN7RFCDHIOu52G4mK0x8PB628g7ZuPQCBATd56o5hxZCSWaxeTtHo1lkWLUGZzm/fRWuPeswdHfgG1mzbhr6nBlJpKbFYW1twcHPaNKKWw3nIzkcnJYR2xEwLpT4UQfYwkzenffNXVuD78EGfhVlwffoi/uhqUIiIuDvPw4dADGXPbDSS11h9e6gYdOUcIITrCYbdz+oUX0R4PYJTkOPPiDwCInjwZ2/e+izUnh8hghtW2eMvKcBTYceTn4zlyBBUdTcINN2BdkUv8ggWoSOPXXu3GTaFrwj1iJ4T0p0KIviCUNKfAbpS1Uor4q+dL0px+QAcCuEtLcRZuxbm1EHfJHtAaU0oKluxFxC/KJn7BNZz6uycAiExJCXuburpHUgFaa53R/U0SQgxW5f/8c7TbfcFxU1oa4/I3XHRpjd/ppO6tt3Hk51O/cycAcVdeSepDD5Jw002YEhLC2m4hLkX6UyFEb2mRNOejjyAQIGb6dEma0w8Ys47bcG4txLX1/KxjTMYs0h5/DEt2NjEzZvRavc5LLW0NABr4H8AONIS9RUKIQSVQX0/tW2/jyMvDV17e5jn+ysoLgkjt8+H6+GNj3+N776HdbqLGjCH9ib8jMSeXqJEjeqL5QnSU9KdCiB6jfT7K162j+n/+jG4wft1EJCWR+vA3sObkED1hQi+3ULRFBwK49+7FWViIq3ArDSUlxqxjcjLxCxdiyc4mfuECIpOTe7upwKWXtmYppaYCd2J0fvuCf7+ttfb1QPuEEAOQ1pqGXbuoycuj7o03CdTXYx4zGhUbG+rwmototpTV/cUXODbk49i0EX9FJRFWK0mrV2HNzSUmM1MSAog+SfpTIUS4aa1xl5biKLBTk5eHdrlaPu92Ez1hggSRfYyvuhrXto9wbS3EufVD/OfOGbOOs2aR9thjWLIXGbOOfbAk2SXrSGqtvwB+APxAKfVV4A/AT4F/DnPbhBADjPfsWSMIzMvDc+yYUbfx5ptJum01sXPmULtxI2XPfR+83vMXmc2kfetRqn7/Hzjy82ncvx/MZiyLs7GuWIFl8WIi+mhCACnLIZqT/lQIEQ6eEydw2O3UFtjxHD1qJMlpY6mjdrspX/dKqJ6y6B3GrOM+Y7lq06xjIIApKcmYdVycTfyCBV3e49iTnz0uGUgqpUYAXwNWAdXAWmB9mNslhOiCY/feB/StACbg8eB87z1q8tbj2rYNAgFj/+Ijj5B409IWJTeaOreyZ74DgIqOxjxmDOX/9CNjT0dmBkNefIHEW27pM8s6hOgo6U+FEN3FV11N3Ztv4iiw07B7NyhF3Ny5pH5jDQlLl3JgbtsJ5HynT/dwSwUYNayd27bhKtyK88MP8VdVGbOOM2eS9uijxqzjzJl9ctaxPZdKtrMFSAD+CjwAVAWfilJKpWitz4W5fUKIfkhrjXvfPhx563Fs3EjA4SBy6FBSH3mYpFWriBo9uu3rAgF8lVXnHzc24q+qIvWRh7Hm5hI9blxPvQUhupX0p0KIyxVwu3F+8AGOAjvOwkLw+YieNAnb00+ReOutmIcNC50bOWwYvrKyC+4R2ewcET46EMC973NjuWrhVhqKi41ZR6v1/KzjwoU9klk1nC41IzkGIznAI8DDwWNNG5A0ML69i5VSNwO/xCjE/Fut9U9aPR+NsbTnCoxO9ata66NKKTPwW2BOsI1/0Fr/uKNvSgjRO3znzlFrt1OTt57G/ftRUVEkLFmCdfVq4q+ef9GRtsbDh3HkF1D92v8RqDL2BphSU0lds4aqX/+a+HnzJYgU/d1l9adCiMFJBwLU7/wEh72AurfeJuB0EmmzkfL1+4zcAFOmtHmdbe2TRjmtZpnQVUwMtrVP9lDLBx+/w4Fr2zajPMeHH+KvrAQwZh2/+U1j1nHWrH4369ieSyXbGdvVGyulTMCrwI3ASeATpVSB1npfs9MeAqq11hOVUl/D2CvyVeArQLTWepZSKg7Yp5T6s9b6aFfbI4S4fA67nYbiYrTHw8Hrb8C29kkSb7kF59atOPLWU/fBB+D1EjNzJkN/8CKJy5ZhslrbvJevutqoZZVfgLukBCIiMI8ZTfIdd1C/YyfKZCL1/q8TM3Uq7tI9UudR9GuX058KIQYf9/4D1NoLcGzchO/MGSLi40m46SasuTnEXXXVJYORpq0i5etewXf6NJHDhmFb+6Tsj+xGOhDA/fnnuLZuNWYdi4rOzzouWHB+1rGd2tf93SX3SDZRSmUAY5tfo7XOa+eSucAhrfXh4PV/AVZgZKprsgJ4Kfj1a8CvlJFyUQPxSqlIIBbwALUdbasQovs57HZjdNPjAcBXVkbZ957l9Msvo+ucmFJSSLn7bqyrVxEzeXKb9wh4PMFlOQU4txSC10v01KnYvvtdrMtvJTI9HTi/1xMgfv48CSLFgNKF/lQIMQh4z5yhdtMmHAV2I7FcZCSWhQuxfucZLNddR0RsbKfuZ83JkcCxm/kdDlwffWTMOm7den7WccYM0r75CPGLFhGbkTGgZh3b06FAUin1eyAD2ItRCwuMYK+9jm8EcKLZ45NA60+DoXO01j6llANIxQgqVwCngThgrewfEaJ3la97pcUSGQD8fvB4Gfmrf8OyeDHKbL7gOq017uJiavLzqd38BgGHA1N6Gin33ot1xcWX5QgxEHWxPxVCDFB+p5O6t9/BUVBA/Y4doDWxmZkMeeF5I7FcP99D199prWn8/PNQ4NhQVAR+PxFWK5YF1xCfnY1l4UIi09J6u6m9oqMzkvO11tPD2pKW5gJ+YDiQDGxVSr3bNLvZRCn1MMG9JqMvkrxDCHF5jP0ZO9vctA+gPR4Sliy54Ljn5CljWc6GfKPUR0yMsV9yxQpjv2RkhxdECDGQdLo/lb5OiIFFe704P/yQWruduvfeRzc2Yh4zmrTHHsOas5yoMWN6u4mDmr+2ttmsYyH+iuCs4/TppD78DSyLsonNmCWfY+h4IPmxUmp6q/2Nl3IKGNXs8cjgsbbOORlcxmrFSLpzF/Cm1toLlCultgFXAi0CSa31b4DfAFx55ZW6E20TQlyC5+QpHBs24Fi/Hu+p1v91z4uwWEJf+51O6t56C8eGfOo/+QTASEf+8MMk3LQUU7NzhRikOt2fSl8nRP/XtDrHUWCn9o038FdXY0pOJun227Hm5hCTkYGxu0v0NK01jV98EQocG3YXGbOOiYnEL7gGS/ZiLAsXhLbfiPM6Gkj+AaPzOwM0YmSa01rrjHau+QSYpJQahxEwfg0jQGyuAPg68DFwO/C+1lorpY4D1wN/VErFA/OBVzrYViFEFwUaGqh7911qXs+jfvt2UIr4q+eT/uSTNHzxBdW/+90F1yR97Ws4CwtxbMin7r330I2NRI0dS/qTT2LNWY55xIheeCeX1pdqbYpBpSv9qRCin/IcPYrDvhGH3Y73+HFUdDQJN9xAYm4OlgUL2twSIsLPX1eHa9tHOLcW4irciq+iAoDo6dNI/cYaLNnZxl5HmXVsV0e/O78D7gX2cH5PR7uCex4fB97CKP/xe631XqXUy8CnWuuC4H3/qJQ6BJzDCDbByPb6H0qpvRid7H9orUs6+qaE6IuaEsj0tQBGa427pISa1/Oo3byZgNOJeeRI0r79OEkrV4YCQWvOciIiTVT9+jfGhcFCuo716zn3//4fJquVpNtuw7pyhZHeWkZWhWhLp/tTIUT/4jt3jtrNb+CwF+AuLgGliJs/j7RvfpOEpTfK6pxeoLWmcf9+nIVbcRUWUr97tzHrmJBgZFjNziZ+4QLMNltvN7Vf6WggWREM/DpFa70Z2Nzq2IvNvnZjlPpofZ2zreNCiO7jq6jAUVBATd56PF9+iYqJIfGmpVhX30bcVVeiIiIuuCb57rup+u3vjCQ7WuP+4gsSrl2MdcUKLNnZqKioXngnQvQrXepPhRB9W6Chgbr336e2wI5z2zbw+Yys5M88Q+LyWzEPGdLbTRx0/HV1uD76+PysY3k5ANHTppG6Zg2W7EXEZmbKrONl6Oh3brdS6n8AO8ZSHEDSlQvR32iPh7otW3DkrcdZWAh+P7FZWQx9+YdGzcc2RkkDDQ3Uvfc+jvx8XB9+CFqD2Ywymxn+s5+S2EaiHSHERUl/KsQAof1+6nfuxFFgp+7ttwm4XEQOHUrqA/eTuDyHmCltl8IS4aG1pvHAAZyFRuBYv3s3+HzGrOM11xizjosWyqxjN+poIBmL0eEtbXZM0pUL0U+49x/AkZeHw27Hf+4cpvQ0Uh98AOuqVUSPH3/B+ToQoP7TT3Hk51P35lsEXC4iUlNQ0dFEDh2KOT2dtMce49TatZgsCVLnUYiOk/5UiH6saYmko8BO7caN+MrLibBYSLjlZqw5uRdd0SPCw+904vroI1xbt+Is3Irv7FkAoqdOJfXBB8/POspe1LDoUCCptX4g3A0RQlweh91OQ3Ex2uPh4PU3kPbIw2i/H0feetylpWA2k3DttVhvW41l4cI2l3I0HjmCo6CA2vwCvGVlRMTFkXDzzVhXrKChpJjYWRlUvvoqAPHz5zFi3TrcpXskkBSig6Q/FaJ/8p4+jWPjRmoL7DQePAhmM5bsbKw5OViuXUxETExvN3FQMGYdD+LaWoizcCv1u3YZs44WizHruDib+IWLMA+RWcee0G4gqZR6OJh2/LLOEUKEl8Nu5/QLL6I9HgB8ZWWc+cFLAERPmcKQ554lMSeHyOTkC67119RQ+8YbODbk01BcDBERxF9zDelr15Kw5AYiYmMBiJ83FyAUSIIRTEoQKcSlSX8qRP/jr62l7u23cRTYjZJWWhM7ezZDf/AiCTff3GafKrqf3+nE9fHHuAq34ty6Fd+ZM4Dx+Sb1gQeMWcesLJl17AWXmpH8nlKqsp3nFfAEwfpWQojeUf7PP0e73RccN6WlMW7D+gsyqGqPB+fWrTg25OP84AO010v0pEnBpADLZSRPiO4n/akQ/UCofyyw4/zb39AeD1Fjx5L27cex5uQQNWrUpW8iLovWmsaDB0PLVes/+8yYdYyPN2YdH3+M+EWLJIFRH3CpQHILkHOJc97pprYIITohUF9P7dtv43g9L5SJrDV/ZWUoiNRa4y4txbEhn9pNm/DX1GBKTSX5rruwrlxB9NSpfaZkR18rkSJEN5D+VIg+SmtNw+4iHPYC6ja/gd/hwJSSQtJXv4o1N4eYmTP7TP84UPmdLuq3f4yzadbx9GkAoidPJvWB+4lftIi42bNl1rGPaTeQlL0cQvQtoc5ufR61m98g4HJhHj0aFRuLbmi44PyI1FRjX4d9I478fKPMR1QUCUtuwLpiBfELFkjaayF6gPSnQvQ9jYePULvRjqPAjvfkSVRMDAlLlmDNzSH+6qslaAkjrTWeQ4dCgWP9Z5+B1xucdbya+G89imXRIsxDh/Z2U0U75BOkEP2At7wcR34+jrz1eI4cQcXGknjzzSTdtprYK66gduNGyp77Pni95y8ymTAlJ3Ho+huMfR1XXGGU+bj5ZkyJib33ZoToJRsObeCHH/8QX8DHsPhhPDHnCW4df2tvN0sI0YN8lZXUbn4Dh92Oe88eIy/A1VeT/u3HsdywBJMlvrebOGAFXC5c27cHg8dCfGXBWcdJk0j9+n3EL8ombnaW1KTuRySQFKKP0h4PdR98gOP1PJwffmjUfJwzh2FrHiLhpptbdHbWnBx0IMDp737v/A38fmj0kPbYY1hzc4gaPboX3oUQvaeyoZKi8iKKyot4/8T7nKg7EXrutOs0L330EoAEk0IMcIH6eqMesr0A17aPwO8nevo0bN/9Lom3LhvQdQWP3Xsf0DtbRrTWeL78MhQ41n8anHWMiyPumquxfPObxqzjsGE93jbRPSSQFKKPce/fb9R8LLDjr64m0mYj9cEHsa5eRfS4cRec33joEI78fKpfe904oBQqKgrb00+RfM89sq9DDAoBHeDLmi/ZXb7bCB4rikKBY1REFBp9wTVuv5tf7vqlBJJCDEDa58O1fQe19gJq33kXXV9P5PBhpD70ENac5URPmtTbTRyQAi4Xrh07cBYW4irciresDIDoSRNJue9eLIuyiZszW2YdB4gOBZJKqWjgNmBs82u01i+Hp1lC9Kxwj9i1rvFoW/sk1pzzeTf8DgeOjRuNmo979xo1H6+/nqTVq9rcx+g7d47aTZtxbNhgnB8RASYTkcOHYx42jPRvf5tTa9cSPWmylOcQA1K9t549lXsoKi9id8VuSspLqPPWAZASk8Js22y+OuWrZKZnMj11Olf+95Vt3ueM60xPNlv6UyHCSGuNe98+agvsODZvwl9RSURCAtZbb8Wam0PsFVegIiJ6u5kDitYaz+HDOAu34tpaSP0nn6KbZh2vvprURx7Bsmgh5uHDe7upIgw6OiOZDziAz4DG8DVHiIGnrRqPp194ER0IEJmahiPvderefQ/t8RA9dSpDnnuOxJzlF9SnCng8OP/2AY78fJyFheDzET19GkOeexZfTQ3xc+eFajzGz5/HiHXrcJfukUBSDAhnXGeMoLF8N0UVRew/tx+/9qNQTEiawE3jbmK2bTaz02czMmHkBTPxQ+OHctp1+oL7Do3v8UQO0p8K0c08J09Ru3EjDrsdz5dfGoOx1y4mMScHy+LFRERH93YTB5RAfT2u7Ttwbi3EtaUwNOsYNXECyffeiyV7EXFz5sis4yDQ0UBypNb65rC2RIgBqnzdKxfUeNRuN6effQ4CASKsVpLuuIOk1auImT695Xla4y4upiY/38jS6nAQmZ5Oytfvw5q7gpgpk1uc3xRIghFMhiOIlNIcIhw2Hd7Ei9texBPwMCx+GLdNuo2EqITQjGPTzGFsZCyz0mbx0KyHyErPItOWSWLUpZNHPTHnCV766CXc/vP/F2NMMTwx54mwvaeLkP5UiG7gdziofestHAUFNHz6GQCxV17B0B/+kMSblmJKSurdBvayqt/+lpiZs1occ23fgbt0D6lr1nTqXlprPEeOhJar1n/yCdrrRcXFET9/PqkPP2zMOo4Y0Z1vQfQDHQ0kP1JKzdJa7wlra4QYgJpqIV0gEGDEK+uwXH89Ea1G7TwnT1FrL8CxIR/PsWPnU5KvWEH8NVejTKYeaLkQPeO1A6/x4x0/xhMwZu1Pu07zq6JfAWCLszHbNpv7Z9xPli2LycmTMUd0PiV/0z7IX+76JWdcZxgaP7S3srZKfypEFwU8HpxbtlBbYMf5wQdor5eo8eNJf/JJEpcvJ2qkBDJNYmbO4tTatUTabJgSE3Ft38GptWsZsW5dh64P1Nfj2rED19atOAu34j15EoCoCRNIvuceLNmLiL3iigs+v4jetenwph7t5zoaSC4E7ldKHcFYiqMArbXOCFvLhOjnmmo+qthYdH39Bc9HDh9O4s3nJyb8Tid1b72NIz+f+p07AYibO5fUhx8m4aalmCyWHmu7EOGiteaU8xRFFUWhpaoHqg+0ea4t1sZ7X3mv21771vG39oXEOtKfCtEJOhCgYdcuHAV2at98k0BtLaa0NJLvupPEnFxiZkyXpHJtaNricnzNGiJttlAQebGVSsas41FcWwtxNs06ejyo2Fhj1nHNQ8QvXCTBeh+26fCmFitveiI7eUcDyVvC8upCDEDe8nJqCwqoeT0Pz5EjRiKciAgIBM6fZDYTm5WF9vtxffQxjvx86t59F+12EzVmDOlP/B2JObnyC1v0e96Al/3n9rO7fHcoo2pFQwUA8eZ4MtIuHj81ndcdfl/6e2amzmTusLmhYztP76S0qpQHZz7Yba/TAdKfCtEBjV9+aQSPdjvesjJUbCwJNy7BmpNL/NXzL0hCJy4UP38ekTYbvrIy0r716AVBZKChwZh1LNyKs7Dw/Kzj+PEk33WXMet45ZUy69hP/HLXL1ts34DwZydv93+hUipRa10L1IXl1YUYILTHQ92WLUbNx61bW9R8NKWmUfbUUwQaG8HnIyI11Zih1JpD116Hr6KCCKsV66qVJK1YQUxmpoyuin7L0eiguKI4NNtYWlka6tiGxw/nqqFXGUlxbLOZmDQRU4SJpa8tDXsinJmpM3l6y9Okx6YTb47n8dmP8/SWp/n54p9322u0R/pTIS7NW15O7ebN1BbYce/bBxERxC9YQPraJ0m4/noi4uMvfRMR4tq+A195OZHDh1P9578QO3cu5iFDQstV63fuPD/rOG8eqQ89SPyibBnE7kfcPjf7qvZRVFHUZj8K4c1OfqnhnP8BlmNkl9MYS3CaaGB8mNolRL/gPnAAx+t5OOx2/OfOEZmebtR8XLWK6PHnaz6OfPVVjt9/P5hMBGpqwO+n7p13sGRnY12xAst118qIn+izLrbnQmvNiboTodnG4opiDtUcAsCkTExNmcptk28jy5bF7PTZDIkf0ub9w5kIp6qhipKKEkoqS7DF2dhfvZ+4yLhQENl8hjLMpD8Vog0Bl4u6d9/FUWDH9fHHEAgQM3MmQ557lsRbbiEyPb23m9gvNe2JjBo3DgWYp03jxIMPhVZHRY0bR/KddxKfvYi4K6+UzLb9RHl9eahWcnF5MfvO7cMX8AFGv+vX/guuCWd28nYDSa318uDfF1ZBF2KQ8tfWUrtpEzV563Hv2WOkGb/uOpJuW31BzcdAYyPOv/0Nx/oNwYv9mNLTSXv4YRJvXUZkSkrvvAkhOqitPRfPb3ueP+z9A2frz1LlrgIgwZxAhi2Dm8fezGzbbGamzSTOHNeh1+iuRDjegJcD5w5QXFFMcUUxJRUlnHQaS7UiVSRTUqYQFxlHva+ee6ff25NBpPSnQjSjfT5cH3+Mo8BubOtoaMA8YgSpjzyMNSeH6PEyrnI5PMePc+4Pf8A8ciTu0lLQGs+JE8TMnElkejpDnv0eUSNH9nYzxSV4A14OVB+gqNwIGosriilzGaVWok3RzEybydenf53M9EwybZl8XPZxj2cnv9TS1jntPa+13tW9zRGib9KBAPU7dlDzeh5177yDbmwkevJkY8Q0J6dFzcemJDuO/Hxq33iDQG0tEUlJoBSmtDSj/uOkSRJEij6vxl3DT3f+9II9F76Aj/3V+1k2bhlZtiyybFlMTJpIhOp6oe+uJMIpry+npKIkFDTurdpLo98ozZgem05meiZfnfJVMtIzmJ46nZKKEh555xGGxQ/jr/v/ytyhc3ssmJT+VAx2WmvcpXtx2Auo3bQZf1WVsa0jNxdrbg6xs2ejIrr+O2QwCzQ2Uv/Jp0ainC2FeI4eBSBq7Fgja6vVytj/+6vMOvZxNe4aSipLQjOOpZWlNPgagPMZzO+dfi9ZtiymJE/BbGqZwbw3spNfamnrv7TznAau78a2CNErHHY7DcXFaI+Hg9ffgG3tk1hzcgCjDIdj/Xoc69fjLSsjIjGRpNtWY1192wWZ4jwnT+EoyMeRn4/32PFQYoDoKVM499vfET15MqbERNIee+yS2dOE6Glaa47VHjMS4lQY+xuPOI5c9PyADvCjRT/qsfZ5/B4+P/c5xeXFlFSWUFJREtoPYo4wMz11OndMuYOM9Ayy0rMYEjekxf/Pnad38vSWpxmfNJ7EqEQezXy0p5e3Sn8qBiXPyZPU2u04Cux4jhxBmc1YrrsOa24O8dnZsq2ji7ynTuHcuhXnlkJc27ejGxpQ0dHEzZtL8t13Y8leRNSYMRy79z4ACSL7mIAOcMRxJBQ0FpUXcbT2KGCsoJmaMpXVk1aTlW4M1nZ0eWpPZye/1NLW63qqIUJcTNMvwTF//EO339tht3P6hRfRHqN+na+sjNMvvEj9rl14jhylfvt2UIr4q68m/am/J2HJkha/jI2SHW/hWL+B+k8/BSBu3jzSHvkmCUuXYrLEU/Xb3zJi3ToqX30VOJ+S2126p9sDyXB8j8TA5PF72Fe1r8X+xnPucwAkRCWQlZ5Fzvgc/vT5n0LLV5vrzj0XrTOqaq1588ibfHDyA1JiUiipKOHzc5/jDXgBI2lPZnom906/l8z0TKamTCXK1P6H0dKq0guCxp8v/jmlVaU9EkhKfyoGE191tdE3Fthp2GVMtsdddRUpDz5A4k03YUpM7OUW9j/a46F+126chYU4C7fgOfQlAOaRI0latQrL4mzi5s4lIja2l1sq2lLvrWdP5Z7z+xsriqnzGLnXkqKTyErPYsXEFWSlZzEjbQaxkf3j3/FSS1uv11q/r5Ra3dbzWuu88DRLiJ5Rvu4VtLvlsj3tdlPz579gHjmStL/7NkkrV2IePvz8800lOzZsMPZ2NDYaJTuefAJrTg7mES2znaWuWQMQCiTBCCZlNlL0pGp3tZFJtcIowbG3ci+egDGAMiphFAtHLAwlxRmfND60THW4ZXjY91xMTprMk397kmhTND7tQ2uNw+MIvdb01OncM+0eMtMzmZU+C1ucrdOv0VaJj7nDenRpq/SnYkAzcgJ8gMNux1lYCF4vURMnkP73f491+a0t+lHRMd6zZ3EWFuIqLMT10ccEXC4wm4m/6kqSbr8dS/ZiosaNlUzvfUzresnFFcUcqD5AQAdQKCYkTWDpmKXG1pD0LMYkjum3/4aXWtq6GHgfyGnjOQ1Ixyf6Nd/ptlMlA0x4+60W+zXcBw4Y+x4L7OdLdqxeJSU7RK/adHgTL257EU/Aw7D4YTwx5wmWjVt20WWqkRGRTE+Zztemfo3Zttlk2bJIi0276P27e8+F1pqTzpOhvY3FFcUcOHcAn/ZR563DpEyYlIm7pt5F7sRcJidPxhxhvvSN+z7pT8WAowMB6j/9lFq7ndo33yJQV0dkejop99yDNTeH6KlTpW/sBO3z0VBUhHNLIc6tW2n84gsAIocNI3H5cizZi4ifP79TZVBkpVL4Na3waSp9VVRRRGVDJQBxkXFkpGfwcMbDZKVnMSt9FolRA2dG/lJLW38Q/PuBnmmOEOGnfT6chVupyXsdtG7znIiEBFREBL6qKiND64YNNO77HCIjpWSH6DOaMqo2zSyedp3muQ+f4x8+/gdcPhcAiVGJZNmyyJ2QS1Z6FjPTZhITGdOp17mcPRf13nr2Vu1tkUm1aQltbGQss9Jmcf/M+8lMz+Qft/8jZ+vPsmbWGh6f/XiXXq+vkv5UDCSNBw/iKLDj2LgR3+nTRMTFkbB0KdbcHOLmzUOZTL3dxH7DV1mJc+uHOAu34Nr2EYHaWoiMJG7OHGxPP0V8djbRkyZJQN6HVDZUGgFjMGjcV7UvtPVipGUk84fND+1tbKqXPFBdakYSAKVUNHAbMLb5NVrrl8PTLCG6X+Phwzjy8qjJz8dfUYkpNZWYjAzcJSUXnBs7bx4nvvkozq1bwe8nZsYMhnz/+1KyQ/QJTctU/2H7P1yQUTWgAwQI8IOrf8Bs22zGWcddVjbVztBac7zueItMqgeqD4TqWo1NHMvCEQuNVOXpmUxImkBkhNGl7Dy9k6qGql7JqNqTpD8V/ZX3bDm1mzbhsNtp/PxzMJmIX7gA21NPkXDD9bI3r4O03497zx5jr+OWQtx79wIQmZ5Owo1LsGQvJv6aqzElJPRySwUYWcoP1RxqkRTnlPMUAFERUcxIm2FsvbAZ/Vp7K3wGog4FkkA+4MAopNwYvuYI0b38Tie1b7yB4/U8GoqKwGTCcu21JN22GsuiRSizmfJ166j69W/OX2Q243r3XSJtNlIfuB/rihVET5rUa+9BDG6dzaYK4Pa5uX3y7d3y+q0T4YAR9JVWlfLVKV9lT+WeFoFjTWMNAPHmeGalzeKhWQ+RmZ5JRloGSTFJbb5GU0bVX9/4a+YOmxt63IMZVXuS9Kei3/A7XdS98w619gJcH28HrYnJyDAGVpfdQmRqam83sV/wVVfj+vBDI8Pqhx/ir6mBiAhis7JIf/JJLIuzZRlwH+FodFBSURJKiLOnYg/1vnoA0mLTmG2bzZ1T7yTLlsW0lGmXTPQ20HU0kByptb65szdXSt0M/BIwAb/VWv+k1fPRwB+AK4Aq4Kta66PB5zKAXwOJQAC4SmvdcuhdiDZorWn49FNqXs+j9q230A0NRE2YgO2ZZ7Dm5hCZnh4613PyFBExzZb5mUwk3nwz1pUriJ8/X5bniB7XtNeiqLyIXeW7WmRTbb5MdbZtNt8r/B5n6s9ccI/uzKg6M3UmT295mvTYdMwmM3OHzuVPX/yJ9Nh0frnrlwR0AIDx1vFcN+o6MtIzyEzPZLx1fIeX87TOqDp32Nwezajaw7rUnwrRU7TXi3PbNmoL7NS9/z7a7cY8ahRpjz5KYs5yoseN6+0m9nk6EMC9dx/Owi04Cwtxl+wBrTGlpGBZvJj47EVYFizAlJTU200d1LTWHK09GkqIU1RexJcOIxuuSZmYnDyZFRNXkJmeSZYti+HxwyXYb6WjgeRHSqlZWus9Hb2xUsoEvArcCJwEPlFKFWit9zU77SGgWms9USn1NeCnwFeVUpHAfwP3aq2LlVKpgLejry0GJ++ZMzg2bKAmbz3e48eJiI/Hunw5SbetbpEMx+90GWnJ8/Op37nTuFgpIhITUUqRdNttklFVXLa2kuC0tc+wxl0TmmksKjcKEDfteRydMJqFIxYy2za7zWWqT17xZNgyqtZ56thTuYfiimKGJwxnb6Wx/Gpv1V5iTbGMTRxL7oRcMtMzmZk2E2u0tcuv1dsZVXtYp/tTIcJNa427pARHgZ3azZvxV1djSkoiafUqEnNyiM3Kkg/Ql+B3OHBt24azcCvOrVvxV1WBUsRkzCLtscewLM4mZsaMFkn8RM9q2rMfChwrinA0GhnCE6MSyUzPZNn4ZaF8AnHmuF5ucd/X0UByIXC/UuoIxlIcBWitdUY718wFDmmtDwMopf4CrACaB5IrgJeCX78G/EoZv6mWAiVa62KMF7qwiJkQQMDjwfn++9S8nodr2zYIBIibO5f0x75Fwo03EhFn/BLQfj/O7dtxbMin7p130G43UWPGYF29irr33sc8dCimxETSHnuMU2vXMmLdOqnxKLqsrSQ4L330ElprZqXPCgWNu8t3c9hxGOh8NlXovoyqTYWRm5anFlcU82XNl2h0KFV5bGQsDb4G7ph8B9+f//0e23c5AHWlPxXisjjsdsrXvYLv9Gkihw3DtvZJrDk5eI4fN5Lm2AvwHjuOiorCcsP1WHNysSxcgJKEcheltaZx/34jw2phobF9xu/HZLUSv3AhlsXZxC9cKHkVeonWmjOuM6F9jUUVRew/tz+0Z3+8dTzXj7o+VIJjrHWs9GtdoPRFsla2OEmpMW0d11ofa+ea24GbtdZrgo/vBeZprR9vdk5p8JyTwcdfAvOAezCWu9qAdOAvWuuftdfGK6+8Un8aLAgvBg6H3c7p7z+P9niIHD481Pm5P//cWLpqt+N3OIgcOhTrqpUkrVpF1OjRoesbDx3CkZ+Po8CO7+xZIhITSVx2C9YVK4jNyuLc735HzMxZoRqPY/74B1zbd+Au3ROq/yhEZy19bSmnXReWlokgggDGUtCEqASy0rOYM2ROl7OpdlWtp5Y9FXtCgWNJZUmoMHJiVGJoeWpGegaz0mbxedXnPPLOI6THpeP2uQfq3sUuUUp9prW+shPnd7o/bU76OtFZDrud0y+82LJmstmMedgwvMePg1LEzZuHNSeHhKU3SpKXdvidTlwffRSs7bgVX3k5ADHTpxO/OBtLdjaxGRmyLaYXeP1ePj/3eYsSHOX1xr9PU4bwpiWqmemZl7WKZrBpr5/r0IxkUwenlLIBPfFJJxJj1PYqoB54L/gm3mt+klLqYeBhgNHNggfRc47dex8Qntm2UOfnMWZ1fGVllD33fc6uewV/WRnKbCbhxiVYV99G/NXn9zP6qqup3bgJR34+7tJSI8HOokVYn33WKNkRHR16jaZgsSmQBIifP0+WtooucTQ6KK4objOIBAgQ4MWrX2R2+mzGJ43vkdHPgA7wZc2XLeo2Ns2CKhQTkydy09ibQplUxySOadGupsQ345PGkxiVyKOZjw7kRDhh15X+VPo6cTnK173SMogE8HrxlpVhe/opEm+9FfOwYb3TuD5Oa43n0KFQhtX6XbvA5yMiIYH4BQuwZGdjWbSwRe4F0TOqGqpCy1OLy4vZW7WXRr+Rv2yEZQRXDLkiVIJjcvLkUIZw0b06Wv4jF/gXYDhQDowBPgdmtHPZKWBUs8cjg8faOudkcF+kFSPpzkmgUGtdGXz9zcAcoEUgqbX+DfAbMEZpO/JeRP9xsc7PX17OkOefx7r81tBGde3xUPv++zg25OPcsgV8PqKnTWPIs98j8dZbiUwbXOmYRfhprTnpPMnu8t2hpaqHag61e82w+GF8ZfJXuq0NbWVU/dvxv/H+ifcZEjeEkooS9lTuwel1AmCNthp7QMYtI9OWyay0WcSb2y9s3ToRDjCQE+GEXVf6U+nrRFfoQID6Tz7FV1bW9gl+v6y8aUPA5cK1Y4cRPBYW4iszBgajp0wh9YH7jVnHrCyU2dzLLR08/AE/h2oOhQZDi8qLOF53HAhuC0mdzlenfDU022iLs/VyiwePjobn/wDMB97VWs9WSl2Hsfy0PZ8Ak5RS4zACxq8Bd7U6pwD4OvAxcDvwvtZaK6XeAr6jlIoDPMBiYF0H2yoGAM+JExfv/Hw+Uu6528jOumcPjvUbqN20Cb/DgSk9jZR778W6cgUxU6b0bKNFv7Hp8KZO7yv0BrzsP7efXWd3hZLjVDZUApBgTiDTlskt425htm02J+tO8qMdPwpLEpzmpqdMZ+0Ha4k1xeLTPiIjIjlbfxaACBXBpKRJoaAxIy2DMYljOp0wY5AlwukJXelPheiwxkOHjH2PG+1GEKQUtLGNKVJmIYHgrOORo7i2BmcdP/kE7fUSERdH3DVXY/nmN7FkZ2Me2n3ZsEX76jx17KnYE9rfWFJZgsvrAiAlJoWs9Cxun3w7WbYspqdOJ9oUfYk7inDpaCDp1VpXKaUilFIRWuu/KaVeae8CrbVPKfU48BZG+Y/fa633KqVeBj7VWhcAvwP+qJQ6BJzDCDbRWlcrpX6BEYxqYLPWelOX3qHoNwINDdS9/TY1r+edz6bahojkZCp/8/9wbNiA5/BhVHQ0CTfcYJTsuOYaVKQsXxAX15QIpynIa0qEA7QIJus8dRRXFIdmHEsrS2nwNQDGspl5w+YxxzaHLFsWE5MmtlgOetXQq4gyRV12EpzWmpbONv0prSzF5XVRSy0KRWREJKsmrmL5+OWSca7v6nR/KsSl+CoqqN28GUd+Ae59+8BkIn7BNdj+/ikCjW7O/sM/tljho2JisK19svca3MsCbjf1O3eGEuV4T5wAIGrCBJLvuQfL4mzi5syRZEM9QGvN8brjLfY2Hqo+hEaHBkSXj18e2t840jJSMgj3IR39xF2jlLIAW4E/KaXKAdelLtJabwY2tzr2YrOv3UCb67y01v+NUQJEDGBaa9x79hiJczZtIuB0Yh41ivQnn0DFx1P+s38Gb7PKL0oRqK6m4he/IPbKKxj6wMsk3nyzJAcQHfbLXb9sMVMI4Pa7+cWnv0CjQ9lUD1YfRKMxKRNTUqawetJqsmxZzE6fzZD4IZd8nVvH33pZgWPrpTwlFSUcrT0KnK9v1dS5rvtsHRUNFTw480Een/14+zcWva1L/akQrQUaGqh79z0cBQW4PvoI/H5iZsxgyHPPkrhsWYstHRFRUW1mbR1MPCdOBAPHLdTv2IlubETFxBA/fz6pDz5A/KJsokaO6O1mDnhunztUgqNpf2N1YzUAFrOFzPRMbhxzI1npWcxKm4UlytLLLRbt6WgguQJwA08Cd2PsZXw5TG0Sg4CvqspYepP3Oo0HD6FiYki86Sast60m7sorURER6EAAX0Ul537zm9B1EUlJpNx1F9YVuS2yswrRUWdcZ9o8Xt5QzrNbnyXeHE9meiZLxixhtm02GWkZPTKzV+OuoaSy5ILZRoDk6GQy0zNDhZFnpM4ItWnn6Z1Uu6sZFj+Mv+7/K3OHyrLTPk76U9Fl2u+nfscOHPkF1L3zDoH6eiKHDyN1zRqsuTlET5jQ5nXWnJxBFzgGPB7qP/kEV+FWnIWFeI4cASBqzBiSvnoHlkXZxM29qkUCPtH9zrjOhGYbiyuK+bzqc3zaB8DYxLFkj8wOleDoqSR0ovt0NGurSyk1BCOLahXwhtR2FJ2lfT6cW7fiyMuj7m8fgM9HbGYmQ1/+IYnLlmGyGKNOjUeOBEt2FIQ2uavYWFRkJCPW/QLL/Pnd3jap8TiwubwuSipK2F2+G3OEOVTfsbnEqER+d9PvmJQ0CVNEeFO3d2a2MSs9i5EJbS/lacqo+usbf83cYXNDjyWjat8l/anoCvf+/TgKCqi1b8RXXk6ExULCsluw5uaGBl8FeMvKcAYDR9f27ej6elRUFHFz55J8551YshcRNXZsbzdzwPIGvBw4d6BF7camwdtoUzQz02by9RlfJ8uWRUZ6BikxUmOzv+to1tY7gH8GPsAonvxvSqlntNavhbFtYoBoPHwEx/o8ajZswF9RiSk1lZT77iNp9SqiJ04EwO9wUP2Xv+BYv4GG4mKIiCBmxgwCjloiR4wg0mol7bHHOLV2LSPWrZPyHKJdZ11n2V2xm91njf2N+6v3E9ABFIohcUOoaKgIFSUGIxHOc/OeY2rK1G55/dbZVGvcNbx24DU+Pv0xCsWeyj3U++oBI3FARnpGm7ONl9I6o+rcYXMlo2ofJ/2p6Cjv2bNGKauCAhr374fISKOU1XPPYrn2WiJieqbubF+mvV7qd+3GWbgFV2EhjQeNzNnmESNIWrmC+Oxs4ufNIyI2tpdbOjBVu6spqSgJBY6llaWhrSND44eSlZ5F5nRjb+OU5CmYTZLpdqBRuo1MXhecpFQxcKPWujz4OB0j41xmmNvXYVKkuec57HZOf/95tMdD5PDhLfZc+J0u6t56k5rX82jYtcuo5bh4MUm3rcaSnY0ym9FeL84PPzRKdrz/PtrrJXrSRKwrV5K4PIdaewExM2eFajyO+eMfcG3fgbt0j6QsH8A2Hd7Ei9texBPwMCx+2CWT1AR0gEM1h4ygMRg8lrmMjL+xkbFkpGWQZctijm0OGekZWKIsXcra2lH+gJ8Nhzbws09+RqSKpDHQGKptFUEEU1KmkJGeccnZRtE/tFeo+SLnX1Z/Kn3dwBZwuah95x1qCwpwfbwdtCYmMwNrbi6Jt9xCZIrM4HjPlocyrLo++oiAywVmM3FXXoEle7Ex6zh+vPxe7WYBHeBwzeFQ0FhcURxaSROpIpmaMtUov2Ez+rah8ZLldqBor5/raCC5R2s9q9njCKC4+bHeJp1rz3LY7Zx+4cULssClPPgAvjNnqX3zTXR9PVHjx5N022qsubmhgr3uzz/HsWEDjo2b8FdVYUpOJnH5cqNkx/TpF/zyP3bvfYAsPx0MWmdUBWO28KVrXgoFeg2+BkorS9ldvptd5bsoKS+hzlsHQFpsGrNts5ltm80c2xwmp0zGHBHeEdCmvY1F5UWhuo1Ns41gLOeJUBE8nvU4t0++XTKpDjBdCCQvqz+Vvm7g0T4fro8/NvY9vvceuqEB88iRRvCYs5zoceN6u4m9Svt8NBQXh5asNn7+OQCRQ4diyc7Gkr2IuPlXY7K0XxNXdI7L62JP5Z7QEtXmfW3Tvv2moHFG2gxiI2XWd6Bqr5/raLKdN4O1Hf8cfPxVWmVjFYNL+bpXWgSRANrtpurf/z8i4uOx3nor1tWrjKK9SuGrqKDq9/+BIz/fWKJjNpNw7bVYV63EsmiRFPYVwMUzqv5050/ZV7WP3eW7W2zUn5g0kZvG3RQqwxHutOAd2duYMyEnNNv40FsPcbr+NI9kPMJ9M+4LW7tEvyL9qTAylu/bR22BHcemTfgrK4mwWrHm5mJdkUvs7NmDekbNV1mJc+uHxszjh9sI1NaCyUTcnDmkP/X3WLIXEz150qD+HnVER1ffaK056TwZmmksKi/iYM3B0JaQCUkTuGncTWSlZ5Fly2J0wmj53gugA4GkMn5S/hUjMcDC4OHfaK3Xh7Nh4vKEexbPd/r0RZ+btLWQiLg4Ao2N1L3xBjUbNuD6cBsEAsRkZDDkxReMJTrJyWFpm+i/LpZRtbqxmr988ZfQRv05Q+aQmZ6JNdoa1vZcrG4jtJ9JFYxEOBUNFZJNVYRIfyq8ZWU4Nm7CUZCP59CXwUHVxSTm5mJZvJiIQVq3UPv9uEtLQ3Ud3aWlAJjS00hYsgRLdjbx11yNKTGxl1vaf7RXM3nJmCV8XvV5aLaxqLyIKreR8yveHM+stFk8nPGwUYIjfRaJUfJ9F227ZCCptdZKqc3BZTd5PdAm0Ye5DxzA8frFfwwiEhJwf/EFjvUbqH3zTQJ1dUQOHWqkJl+5gujx43uwtaKv8/g9oZnGXeW7Lnpeakwqb9/+NlGm8H3I8gf8fOn40ggay4tb7P+IUBEtMqlmpmcyKmHURUdkJZuqaIv0p4OT3+mk7q23cOQXUP/JJ6A1sXPmMPSll0i8+SZMSUm93cRe4auuxvXhNiPD6tat+GtqICKC2MxM0p98Akt2NtFTp0pG2i662AqfF7a9wAvbXsAbMGp0j0oYxTXDrzH2N6ZnMjFpYtgzl4uBo6NLW3cppa7SWn8S1taIPslfV0ftps3U5OXhLikBsxnz2LF4gzWZmtPAsbvuRsXGkrj0RqwrVhA3bx7KJL+UBoLLTVLTNMO36+wudpfvprSyNFSKY2ziWObY5lBSWRLq4MDYI/nMVc90WxDZlFF1SsoUSiqMuo2FJws5VHMo9LqXmm28FMmmKtoh/ekg0JRMrtZup+6999GNjZjHjCbt8cew5uYSNWpUbzexx+lAAPe+z4MZVrfSUFICgQCm5GQsi7OJX5RN/IJrZLXSZWragnHa1fbKMW/AywMzHiDTZgyKpsWm9XALxUDS0WQ7XwATgWOACyNludZaZ4S3eR0nCQhautylrToQoH7nJ9TkvU7dW2+jGxuJnjyZpNtvIzEnh8jkZM789KdU/8d/trgubt48rCtWkLB0qWx8H2A6kginOa01p5yn2F2+O/TnUI2Rmj1SRTI9dXooMU6WLYvU2NTQ63R3RtWADvBljTHb+O6xd/n49McEdAAAhSJCRbBo5CKWjll6ydlGIZrrQrKdy+pPpa/ru7TWuPfswVFgp3bzZvznzmFKSiJx2TKsK3KJycgYdL9X/LW1uLZtMxLlbN2Kv7ISlCJm1iwsixZhWZxNzMyZMut4GVxeV2hfY1F5ESWVJaEtGG0ZFj+Mt29/uwdbKPq77ki2c1M3tkf0Yd7Tp3Fs2EBN3nq8J04QkZCAdfUqklbfRszMGRAI4Nq+HceGfOreeSd0XdzcuQz/8Y8wjxjRi60X4XSxZTK/3PVLbh1/K76Aj/3V+ykqL2LX2V0UlRdR3lAOgMVsIdOWyS3jbmG2bTYz02ZeNMPbreNvvezAsdZTy56KPRRVFFFcXsyeyj04vU4AkqKTmJk6k9LKUpJikgjoAP+y+F9kplD0FOlPBxjPyZPU2u048gvwHD2KiorCcv31WHNzsSxcgBpE+x611jQeOBDc67iFht1F4PcTYbViWbDAmHlcuJDI1NTebmq/pLWmzFXG7vLdocCxeVKcScmTQlswqt3V/Nvuf7tg8PeJOU/04jsQA01HA8l/1Frf2/yAUuqPwL0XOV/0IwGPB+d771Hzeh6ubdtAa+Lmzyf9775Nwo03EhETQ+OXX1Lxi1/gKLDjO3uWiMRE4ubPx7V1K5E2G40HD+I5cVICyQHsYolwTrtOs+btNZRUlNDgawCMEc8rh14ZyqYazj0XAR3giOPI+aQ45cV86fgSMPY2TkyayC3jbgntbRyTOAalFEtfW8ppl5FRVYJI0YOkPx0A/A4HtW++haOggIbPPgMg7qqrSF3zkLEiZxAlhfE7Xbg+/ghXYSHOwq34zp4FIHr6NFK/sQZL9mJiM2ahIjv6kVM08Qa8fFH1BUUVRewu301xeXFogDYuMo6M9AwezniY2emzQ3WSm0uNTQ1bzWQhoOOB5IzmD5RSJuCK7m+O6EnuL76g5rXXqbXb8TscRA4bRtqjj2JdvYqokSPxVVdT8/rrODbk496zB0wmLAsXYv3ed4mwJFD2ne8QPXEipsRE0h57jFNr1zJi3Tri58/r7bcmwiA9Lp3y+vI2n3M0OlgxYQVzhsxhtm12WAsROz1OSipLQkFjSWUJdR6jtlViVCKZ6cbMZ6Ytk1lps4g3X7jEeufpnVTUS0ZV0SukP+2ntMeDs7AQR4Ed59/+hvZ6iRo/nvQnn8Sas7zPD6R2VzZ3rTWeL78MZVit37ULvF4iLBbiFyzAkr2I+IWLMA+xdUezB5WmPAJNM46llaWhGcXh8cO5YugVoS0hE5MmEhnR/sf47ljhI0R72v0JVEo9CzwHxCqlapsOAx7gN2Fum+gih91OQ3Ex2uPh4PU3YFv7JNacHMAYRXVs3Ijj9Tzc+/ahzGYSblyC9bbbiJ8/HwIBnIWFlP/0p9R9sAW8XqKnTMH23e9iXX4rkenpAFT99reMWLeOyldfBSB+/jxGrFuHu3SPBJIDQNMs367yXew+a2RUbSuIjIqI4tl5z3L75NvD0g6tNUdqj4SyqBZXFPNlzZdodKi2VdO+xkxbJmMTxxKh2t9rIxlVRW+Q/rR/0lrTsLsIh72Aus1v4Hc4MKWmknTn17DmriBmxvQ+v++x6re/JWbmrBbHXNt34C7dQ+qaNR26R6C+Htf2HaFEOd6yMgCiJ08m9ev3EZ+dTdzs2VITuhO01hyrPWYEjcESHIcdhwEjj8DUlKncPvl2smxZZKVnMSR+SC+3WIgLdTTZzo+11s/2QHu6TBIQGBx2O6dfeBHtPr8mXsXEkHzPPfjKyqh79120x0P0tGkk3XYb1uW3EmG14t63D8eGfGo3bsRfXY0pJQVrznKsK1cSM23aRV8v3PUqRcddTpIaj9/D3qq9oWyqu8t3U+sxPuumxKQwx2bMNNb76sk7mBe2ZTL/v+L/HzGRMTT6GkOBY1M7EswJZKRnhDLNzUqbRUJUQqdfoylra/OgcefpnZRWlfLgzAe77b2IwaELyXYuqz+Vvq5neI4dw1Fgx2G34z1+HBUTQ8INN2BdkUv8Ndf0q2Waru07OLV2LZE2W6dWEHmOHsVZWIhzSyH1O3eivV5UXBzxV1+NJTsbS/YizMOG9eA76d8a/Y3srdwbChyLy4upbqwGICEqgaz0rFDyuc5mChcinNrr59oNJJVSU7XWXyil5rT1vNb64oXfeph0roaD19+ALzhS2FqE1Yp1+XKSbltNzPTpeMvLjQQBG/JpPHgQZTYbCQJWrsCycGGHRhYlkOwbOptR1dHoMJLilBuB497KvS3LcASXqM6xzQlbBlOtNSfqToQ61OKKYg5UH0CjQ+2/auhVfHb2M56d+yy5E3MvOdsoRE/raCDZXf2p9HXh46uupvaNN6jNL6ChuBiUIm7+PKy5K0i4cQkmi+XSN+mjXNt3cHzNGiJtNnRDQ5tBZMDtpv6TT0JLVr3HjwMQNX68ETguzib2iiuIGETJgy5HZUNlKCHO7ord7Kvahy/gA2BM4hiy0rPIshnB4zjrOOnfRJ91OVlb/x54GPiXNp7TwPWX2TbRzXyn264bBDCpcAtoTd1771G+7hUjsU4gQGxmJkNf+gGJN988aAsj93ftZVRdNm5ZqAzHrnIjm2qoDEeEUYbjrml3hUZCU2JSwtLGem89e6v2hvY2FlecH421mC3MSpvFI5mPEGOK4d92/xvJMcmUVpbyb9f/myw5FQOB9Kd9UKCxEeffPsBht+MsLDS2c0yahO3pp0hcvhzz0PDt9+5J8fPnEWmz4SsrI+1bj4aCSM/Jkzi3bDH2Ou7YiXa7UTExxM+bR8rX78OSnT0oa152VkAHOFRzKBQ4FlUUcaLuBGBsAZmRNoN7p91rLFMNYz8rBremFVevFr1Kg6+B/13+v3xy5pOwrrhqN5DUWj8c/Pu6sLz6INXds3haa9x79+HIex0uMsOs4uI4+4//RO2bbxKoqyNy2DBSv/ENrCtWED1+XJdfW2Yi+4b2Mqou+b8loSxvCeYEMm2ZLBu3LFSGIyYyptvb01RDsqm2VdNso1/7AWPWM3tkdmiZ6gTrhBZZXf93//9KRlUxoEh/2nfoQICGzz4z6j029Ynp6aTccw/WFblET5nS5/c9dpZr+w585eVEDhvGuT/8kcZDX9J46BCew8aePPPo0STdfjuWxdnEXXUVETHd3y8MJPXeevZU7gklxSmpKKHOayR9S4lJISs9izsm30GWLYvpqdOJMsksruh+voCP47XHOVhzkEM1h9h5eie/3PXLUJ3sN4+8yY93/pifL/552NrQ4UX+SqlrgLHNr9FaSxTRi3zV1dTaN1KTl0fjF1+goqIwT5iA98svLzhX19fj2LiRxKVLsa5cQdy8eVIAeICo99aTHJPMOfe5C56LUBE9UobD7XOzr2pfi8Cxyl0FQGxkLLPSZvHgzAfJsmWRkZZBUkzSRe+18/RO3D43j2Q8IhlVxYAk/WnvaDx8BEdBPrUFdrxlZai4OBJvXEJibi7x8+ejTOEpUdTbHG+8wenvP09EdLRRmiMQoO7tt4mZMYMhzz1rzDqOHdvbzezTzrjOhILG3eW7QwOjTUnfbhp3k7GqJz0rbNtBxOCltea06zSHag5xsPqgEThWH+Kw4zDegBcwPu+NThjNbNtsdp/djTXayo92/ijsdbI7FEgGa1xNAIoAf/CwBqTj62Ha78f10cfU5L2O89330F4vMTNmMPQHL5K4bBmYIjn11FO4tmwJXWMaPhzbt79N4tIbiYi/sBSC6F8qGyqNZarBxDhfnPsiNNPXXLQpmh9e88NuS4bTPEnNGdcZisqLeOvoW5RWllLprgzt/RiVMIqrh19NVnoWmbbMDqUob9I6g+rcoXMlo6oYUKQ/7Vm+qipqN23GUVCAu7QUIiKIv+Ya0tc+ScINNxARN/ASmmifj4aiotBex8b9+40noqKITE1l6Ms/REVE0HjwICn33de7je2DfAEf+6v3n9/fWL6bs/VGbcymgdGHZj0U6uMSowZPzVARfufc5zhYfTAUNB6qOcShmkO4vK7QOUPjhzIpaRLXjLiGSUmTmJg0kfFJ44k2RQP0aJ3sjs5IXglM1x1J8SrCwnPiBI7166lZvwHf6dOYrFaS7vwaSatXEz1pEvU7dnDmn/6JunfeRTc0gMkEfj/J99zD0Oe/39vNH/S6mlFVa83R2qMtAsfjdUYChGhTdGimb86QOZxxneE3Jb/p9oyqHr+Hz899TlldGb/a/SsCOtAicJ2cPJll45cZJTjSM0mNTe3ya5VWlbYIGucOm8vPF/+c0qpSCSTFQCH9aZgF3G7q3nuP2gI7zg8/BL+f6GnTsH33uyTeugyzbeDVN/RVVeHcuhVXYSHOD7cRqK2FyEji5szB9szTWLKzOf3Dl1FKkXCdsbrasnhxL7e6b6j11FJSURKacdxTuYcGXwMAQ+KGhPIHZNmymJI8pcMDo0K0x+V1GUFi9aEWM43NV5clRScxKXkSuRNymZg0kcnJk5mQNKHdjPU9XSe7o/8bSoGhwMUzuYhuF3C7qXvnHWpee536HTtAKeIXLmTId7+D5frr8Z48iWP9Bhx2O74zZ4hISMCam0v0pImc/clPiRw+nNpNm0hYskRqO/ai1hlVT7tO89JHLwFcEOh5/V72ndsXqt1YVF4USkiTHJ1Mli2Lr0z+CrOHzGZ6ynTMppaZdbujnmNFfUWLJar7qvaFMrqmxqRyzn2OxKhENJqfL/451wy/5rJfs0lbm8HnDpOlrWJAkf40DHQgQP3OnTgK7NS99RYBl4vIoUNJffABEnNyiJk8ubeb2K10IIB7797QrKN7zx7QGlNaGglLlmDJziZ+wTWYEs5/4Bz733/sxRb3Dc2zhTcFjk21iU3KxOTkyayauCqUTXVo/MBItiR6j8fv4YjjyAUzjKecp0LnxEbGMjFpIotHLmZSsjHDOCl5EqkxqZ1aJt20qmt80ngSoxJ5NPPRsK/q6mggmQbsU0rtBBqbDmqtc8PSqkFMa427dC81r79G7abNBOrqMI8cSfoTf4d15UoiYmNxbN7MsXvuxV1SYizTWXQ+uGzYXcSptWuJnjChU/WiRPi0l1E1e2Q2xRXFodnGPZV7aPQb/8VGJ4wme2R2qBTH2MSx3b7vwhvwcqD6QChoLKkoCf1yM0eYmZE6gzun3hlKimOLs7VYMtGdQaQQg4T0p92o8eBBHAUFOOwbjQHV+HgSbroJa24ucXOvGlC5APy1tbi2bTOCx61b8VdVgVLEZmSQ9u3HsSxeTMy0aQPqPV8uj9/Dvqp9oUyqReVFof37CeYEMmwZ3DTW2N84K22W1G4UXeYP+DnlPHV+D2MwcDxWeyy0iisyIpJx1nFkpGdw26TbQgHjcMvwbin/0npVFxD2VV0dDSRfCsurD0IOu52G4mK0x8PB62/AtvZJrDk5RuKcggJqXs+j8cABVHQ0CTctJem224nNysS17SPO/vgnOP/2N7TXS/Tkydi+8x2sOcuJTE8P3d9duocR69ZR+eqrgJHye8S6dbhL90gg2Uvay6i64M8LQiOhU1Om8pXJXwkFjmmxad3elnPuc6HSG8UVxZRWloaCXFusjUxbJndOvZMsWxbTUqZdkGlOEuEIcdle6u0G9Hfe8vLQvsfGzz8HkwnLwoVYv/MMluuuIyI2treb2C201jQeOIizcAuuLYXU794Nfj8RViuWhQuxLM4mftEiIpOTe7upfcY597kWQWPzGsmjEkZxzfBrQstUJyZNlNqNotO01pTXl4dmFg9UH+BQzSEO1xwOfZ5SKEYmjGRi0kRuGH0Dk5MnMzFpImMSx1ywkqw79caqLtXZbRpKqeVa641hak+X9YcizQ67ndMvvIh2n5+dUlFRRE2ZQuMXX4DXS8ysWSTddhuJty4zlq5u2IBj4yb8VVWYUlJIXH4rSStXEj1tWruzU91dYkR0XkAH+LLmSx548wEcHscFz0dFRLEmYw2zbbPJSMvo9pFQf8DPoZpDoaCxqLwotL8yUkUyNWUqmbZMI2FAeiZD44e2+zPVOhFO68dC9Av/EVxO/sCmbrlde4WaO3Btp/vT/tDXhUOgvp66d9/FUWDH9dFHEAgQM3Mm1txcEm9dRmRq1/dm9yUBlwvXjh2hJatNtaGjp03Dkp2NZfFiYjNmoSJln15ABzjiOBJKiFNUUcSx2mPA+RrJs9PP728Mx+CsGNgcjY4WS1Kb/q711IbOSY9ND80sNv093jq+92a3S/4K770MjpNgHQk3vAgZd1zWLdvr57rym+hloM8Fkv1B+bpXWgSRANrjoXHvXlLuvRfr6tVEpqbgsG/k2D33GpnWzGYSrr0W66qVWBYtQpnDN5IhLk+jv5G9lXvZVW4sU91dvps6T12b58aYYnjpmpe6NaPquMRxREZEGkFjRRHF5cWh0bGUmBQy0zO5bfJtZKZnMiN1RqfrR0oiHCG6nfSn7dB+P66Pt1NrL6D2nXfR9fWYhw8n9eFvGPkAxo/v7SZ2C8/RozgLC3F+sIX6Tz5Be71ExMURv+AaLI99i/hFizAPGdLbzex1Db4GSitLQ4FjcUVx6AN9cnQymbZMVk1cxWzbbGakzQhlsBTiUhp8DRyuORwqq9H0d1MNbjCWQk9KnsTNY29mYvLEULbU9sqZ9biSv4L978BrJIvCccJ4DJcdTF5MVwJJKY7TBYGGBnxlZRd5MkDs7CwqfvGLUIa5mFmzGPLC8yQuW9alZSsyE9lxXc2o6mh0UFxRzGdnP2N3+W5KK0tD9XzGWcexdMzS0DLV4vJi/nX3v3ZbRtWADnDUcdQIGCuK+bjsY067zufuGJUwCo3moZkPcduk2xiZMPKy91dKIhzR75X8FU5+Av5GWDezW0ZqL5P0p21wf/EFjvwCajduxFdRYSSSu/VWrCtyiZ0zp9/vAQw0NlL/yac4C7fg3LIF7zFjpUjU+PEk3303lmsXEzdnDipqcBexL68vDyXEKSov4otzX+DTRpmp8dbx3DjmRjLTM5ltm82YxDFSu1Fckjfg5XjtcQ7WHDRmF4MZU0/UnUBjrNCMNkUz3jqe+cPnG8Fi8kQmJk1kSNyQvv8z9t7L54PIJt4G43gfCiQf6eiJSqmbgV8CJuC3WuuftHo+GqN21hVAFfBVrfXRZs+PBvYBL2mtf96FtnZady4JNRLnlFLz2uvUbmp/GdWpJ9cSabOR+uADWFeuJHrChMt+fXFpHc2o2lQMdlf5rlBG1UM1hwBjmej0tOncPe3uUJrwlJiUFq8zKmEUyycs73I7XV4Xeyr3UFxuzDaWVJSERmIToxLJTM9k/rD5FHxZQHpsOk6Pk3+/4d8lyBOiSdNIbTCZVU+M1HZAh/vTgc575gy1GzfiKLDTeOAAmM1YsrOx5uZiuXYxEdH9e3bJW1aGs3ArzsJCXB9/jG5oQEVHEzdvLin33YclO5uoUaN6u5m9xh/wc7DmYIvAscxlDL7HmGKYmTaT+2feH9oK0qdmgUSfE9ABTrtOX7Ak9YjjSGjA36RMjE4czdSUqSyfsDw0wzgqYRSmCFMvv4Mucpzs3PFu0JVA8nHgkhVslVIm4FXgRuAk8IlSqkBrva/ZaQ8B1VrriUqprwE/Bb7a7PlfAG90oY296oLEOTExJN60FNOwYZz73e/B621xfkxWFumPP0781fNRpn76w9tPtZdRdWLSxFD9xl3lu0IFiS1mC5m2TG4ZdwuzbbOZmTaT2MjuS+6gteZk3cnQbGNReREHaw4S0AEAJiZNDI3EZtoyGZs4NpQwYPvp7T1WhFaIbtfN+xdb6IWR2g7oUH86UPmdLurefhuHvYD67TtAa2IzMxny4gsk3nJLv04io71eGoqKQktWGw8eBMA8fDhJq1ZiWbyYuLlzB0xioM5yepyUVJSEynCUVJRQ76sHjD1nWbYs7pl+D1npWUxNmRrWBCWif6tsqAzVY2xaknqo5lDo5wlgePxwJiZPZOGIhUxKnsSkpEmMtY7t/8ufAwFwnoHqY1BzDKIToLH2wvOsI8PWhHYDSaVUQetDwHVKqSS4ZLryucAhrfXh4L3+AqzAmGFssoLzGexeA36llFJaa62UWgkcAVwdeie9TPv9uLZto+b1POref99InJORwdCXXsJy/XXUb99Ozfr1LYPI6GiGPv99kr/yld5r+CDXXkbV2+1GTUZbrC20RHXOkDlMSprUraNVbp+bvVV7W9RubCpIG2+OZ1baLB7OeJis9Cxmpc8iMSqxzftIRlXRr3X3slO/D2pPBjvY48YMZFvCOFLb3GX2pwOG9vlwbdtm1Ht87z2024159GjSvvUtrLk5RI0Z09tN7DJfZSXOrR/i3LIF17ZtBOrqIDKSuCuuwPad72BZnE3U+PF9f3lcN9Nac8p5KpRJdXf5bg5WH0SjiVARTEqaRM6EnNCKnuHxwwfd90hcmtPjNGYXmwWLh2oOhT4vgbFXdlLyJFZNWsXEpImhP5YoSy+2/DI1VBv9WPVRI1hsChqb+jZ/Y6sLFNAskao51uhPw+RSM5IjMQK/3wZbpYArgX/pwL1HAM177pNA6/oToXO01j6llANIVUq5ge9izGY+3YHX6jWe48epycvDsX4DvrNnMSUnk3LXXSSuWkmgthbHhnzKf/YzAvX1mEeOJHHFCmo3biRyyBB0QwNRo0b39lsYlGrcNRRVFBFnjsPlvXCsIi4yjufnP8+cIXMuu1P7fenvmZk6MxTUnXGd4bUDr7HzzE68fm+LfR9jEsewcMRCY7YxPZOJSRM7FLS2zqA6d+hcyagq+o+uLDvVGpxnW3WqR88/dpyCYO2udoVxpLaVy+lP+zWtNe69+3AU5FO7abORhdxqxbpqJdbcXGKzsvpl4KADAdylpTg/2IKzsBB3aSkAkenpJNy0FEt2NvHXXIPJ0o8/xHZBU7/WlEm1qLyIioYKwBgczUjLYEnmEjJtmWSkZfTvD/mi2zX6GzniOHLBstTmeSDiIuOYmDyR60ZdZwSLweQ3qbH9MHuzt8EICEN92dFmQeNxaGyV9T82GZLGwJDpMOUWSB4DyWMhaSwkjYJ9+d2etbU9lwokrwSeAL4PPKO1LlJKNWitt4StRYaXgHVaa2d7nYtS6mHgYYDRo3suIAs0NFD39tvUvJ5H/c6dEBFB/MIFDHnuOaInTqB202ZOPfY43lOnjOLIt9xM0sqVBHw+yv7+KaInTsSUmEjaY49xau1aRqxbJzUew0hrTZmrLLREdffZ3Xzp+BIwav0oVGiTNRj7MV68+sVuyajq9XuJi4zj8fcfZ0bqDE7UnQgtkTVHmMlIz+DrM75Oli2LjPSMC/ZWdpRkVBVh1xvLTt99CdImtQoWg6OwNcfB13JZOpYhRgc7ah7MGm18nTzG+Pv4dti0tuXrhHmktpUu96e91dddLu+pUzjsG3HY7Xi+/BJlNmO59lqsK3KxZGf3y2QyfocD17ZtOLdswbn1Q/znzkFEBLGZmaQ/+QSW7OxLlucaaGrcNRRXFIcCx9LKUhqDg0IjLCOYO2wuWelZzLbN7vDgqBj4/AE/J+pOhILFgzVGwHi89jj+4CBgZEQk463jmW2bzR3Jd4SS3wyLH9Z/aoD6fVB76sLZxKZg0Xm25fmRsZA02ggOR1/dsh9LHgMx1vZfL+OOHt2u0aE6kkqpkcA64CyQq7W+ZE+mlLoaI0nOTcHHzwJorX/c7Jy3gud8rJSKBM4A6UAh0LTrPAkIAC9qrX91sdfrrtpaF0u20zpxTsDpxDxqFEm3rSbhxhtp2L2bmg0baPj0M1CK+KuvxrpqJQlLloT2QFT99rfEzJxF5auvhl7DtX0H7tI9pK5Zc9ltH4i6klG1qX7irvJdoeCxvN5I4WwxW8iyZTHHNie0v/G94+91KWtrWyobKkN1G4vLi9lbtTfUoYIRpCqlePqKp1k1eRXmCNn3IfqJcASSHpcREP771bRYinMxMdZWnerYZo9HG4Fhe0r+CvmPGzOf1lFhr691kfM73Z8219frSPpra6l96y1qC+zUf/IJALFXXGHUe7z5JkzWS3wI6mO01jQeOBCadWzYvRsCAUxJScQvWmTMOi5c0K/3c3aG1pqjtUeNhDjB/Y1HHEcAI/HctNRpoUyqWbYsbHG2Xm6x6G1aa87Wnw3NLDYFjocdh0OfjxSKUQmjztdjDM4wjk4c3fc/J2kNrso2ZhObVsechIDv/PnKBNYR5/uuptnEpn7NYoM+NhDVXj/XoUCy2Y1uBRZorZ/rwLmRwAHgBuAU8Alwl9Z6b7NzHgNmaa2/GUy2s1prfUer+7wEOC+VtbU7OleH3c7p7z+P9niIHD4c29oniV+4sM3EOYkrV4HPiyO/gLp330W73USNG4d15UqsuTmYhw276Ot0Z2bYgax1RlVou/6i2+emtLKU3eW7+az8M4rLi3F6nQDY4mxcYbuC2UNmM8c2p1tHQ5sC1qZ9jUUVRZyoM1ZzNxVDzkrPCi1TvfeNe0OJcB6f/Xi3tEGIHtHVAMzvNZaptp5RbPrbVdH+9TFJsOJXRueaNBpiky7/vXRzQNzZQLLZdR3uT5vri4Gk9nhwfvghjgI7zvffR3s8RI0di3VFLok5OUSN7LHlw90i4HLh+vhjnFsKcRYW4jtrzBjETJ9O/OJsLNnZxGZkDIrkeE17+JsyqRZVFFHTWAMYGcOzbMZMY1Z6FjPSZnRr4jnR/9S4a0Izi82T39R5z9fUtsXZQhlSJyYbgeN46/i+/bPTWNf2bGLTMW99y/PjbS1nEZsHjYkjoJ8lj2qvn+tU1lat9SagQ71vcM/j48BbGOU/fq+13quUehn4VGtdAPwO+KNS6hBwDvhaZ9rTnRx2O6dfeBHt8QDgKyuj7LvfM54MBIiZNYuhL71EzIzp1L39Dqe/9z18Z88SEdznkbRyJTEZGYNqOUu4XSyj6rrP1hFvjg/NNu6t2osvONozMWliKJvqFUOuYFj8sG77N6n11BpZ5oKBY/Msc6kxqWTZsrhj8h1k2bKYljqtRTYwSYQjwiqcy07b27848/aWGeNa/117CoLZhgGIiDT2bCSNMfZ2NM0qVh6CbetaLlU1x8Kyf4ZpOd33Xty1sOxnEBnTfffsos70p32R1hp3SYlR73HzZvw1NZiSk0m64w6sK3KJmTmz3/SHWms8R47iLNyCq7CQ+k8+RXu9RMTHE79gAZbF2cQvXIR5SP+dXevo6p7KhspQQpyi8iL2ndsX6l/HJo7l2lHXhgLHsdax/Wd5oehW9d56DjsOn1+SGkx+07QXFiAhKoFJSZNYNn5Zi3qM1ug+uCrB5wkOeh5t1ZcdNb5uONfy/KgEIzBMGQ8Trm8VNI6GqPjeeBe9olMzkn3Z5Y7S7r9qrpFhrRVlNjPqP/6DxgP7cWzIx11SAiYTlkWLsK5cieX664jo5D4PmZHsmIz/ymixd7G1yIhIZqbODM02zrbN7rZfUM2X7zRlU23aVxmhIpiSPIWM9AyybFlkpWcxwjLioh+aWifCaf1YiMsWrkBSa1g3wwgIW4uINJbotM4YlzDswlHYpr8ThoPpIuOXl7vsVGsju53jRHAP5Ynz2VprjhmP3TXGuVfcDzm/7Pi929HVGcmu6u0ZSc+JEzgKCqgtsOM5dgwVHY3l+uuMeo8LF6LM/WOkPdDYSP3OnaFZR+/x4wBETZyAJXsxluxs4ubM7pf7OFu72OqeF+e/yJTUKS0Cx5NOI4txVEQUM9Nmhvq4LFsWyTGDY/muOM8b8HLUcbRF0puD1Qc55TwV+nwWY4phfNJ4JiVNMpalBpenpsem953BpOZlMtrKflp7ihbbKyLMwX2Krfuxscaf2OQ+t/w0nLptaWtfdrmd6+dTp130OWU2o71eoqdMMZau5iwnMi2ty68lLq75/sZffPqLC2YkARLMCfzr9f/KzLSZxFzmzEJTRtWZaTNDy3c+OPEBB6oPhF47MSqRzPRMsmzGMtVZabOIM8d1+jWaB407T++ktKqUB2c+eFntF+KyAzBPfTDwajb62ryTbasmVZNrvt2yc7WOAvNl/J9sLyAO7UM5Do7j54PF5oGjp9VgoDne+DCQNNoYUbbNgPGLYcgMSJ8CRwrh1C5Y+GSXmzwYAkl/TQ21b76Jo8BOw65dAMTNnYt1RS4JS5diSkjo0fZ0lffUKaOu45ZCXNu3o91uVEwM8fPmhZas9rdluB2x9LWlLTJeNmmeaC41JjW0rzHLlsW0lGlEmfp/EP3/b++94+OqrvXvZ0+vmlHvvVqWLck2woCx6SVgisGmJnDT8A9yaTcBEvLmEnLJBQKBcAmEXJILhBIMSeiBEIMxhoDBtuRuy0WSLcvqoz59v3+cOTPnTFGxZiSNtL7+zGdmzpw5Z+uMpT3PXms9ixgfXu5F62CrP7IoRhqb+pv8EWklU6IgocAfWRT7MWabsqffQElcSAwXTRQXEmWLnkxY9PTXKAYvemYC0/0zzSCilto6m1FlZcF97FjoCwoFEq+9BpbLLoNuXmSxSZwYDo8DO7t2+tNUGzoa/Ln0ZrUZTq8TXklqnE6pw71L78WSjBP/3ia6uDZ0CIY4T2x9wu8QBggRx9OyTsO5+eeiOq0aBQmTS98JJxbrMim1lYgC42mbIeunGEYsDnXIj6nSBybU/FOEc4iRPCmWXOC8/4rez+L1Alc8K4jCHa8HJn9/VPEI4A5ydtVZAEsekFgIFC4XBKMlNyAepavGhzcCr90ItH4t1F6ecbfwfPVz0fsZZhFepxODGzag/+23MbjhE3CXC5qSYqTeeScsF18EdVbWdA9xTLjLheGt2zC48RMMfvIJnAeErBJ1Tg6sV1wB04rlMNTVQaGb/lTnWNA+1I5tndvCikgA4OD45bJfoia1BjnmnJkTPSJiBucc3fZuQShKzG8O2A5gRPL3NduUjRJrCc7IPcPfi7HQUji9iwuyRc8w81nwoqe/TcZ8oPwboW0yVNowJyEmCkUkffhrJO2BCBjTaJBx/89hveyyKIxw9nEijqp9jj7Ud9T7HVV3de+Cy+sCABRbiv1pqmL/xvcOvzdpR1Wnx4k9PXtkaapiHr9epUd+Qj729+yHVWuFF148uuJREnlEdIhl7SIAPFYliKxg1EYge1H4fopMKdQpylJ2CiI7xoliNbhtxsonJhb59HqAgbagtFMxstgiONt5nPL3GJLlwlAmFHPHtkEP5vBG4E+XC6vNrmFBRBYun9gxgphNEUnOOUa2bRPqHt9/H96+PihTUmC56CJYLr0kLtpauDs7MbjxUwxu3Iihzz6Dd3AQUKthWLJYSFldsQKawoIZ/3NMFKn527ZOIU21dVBISQ9ucSWSaczEP678x1QPlZginq5/GhatBSqFyh9l3NOzR9Y7O0mX5I8siuY3JdYSGNXTUOMna5PRFJodM1qbjHClFBOdH4iIUERyHFhWroTjwAF0P/N7YYNCgaR/u5FEZASCay7ahtpw3+f3AYBM6LUNtsnacBywHQAQcDW9ft71/nSacPUXFxVdNGHh2DXShYYOwUW1obMBu7p2wekVvqDmmHL8Pa1q0mpQYi2BSqHyp/7ctPAmEpFEdNi+Djj6lRAtfKxqcq0m7P3h3eLCiUgAcA0Bboevn2LQ5JqQE7lOMRzimMdKn/V/CWgJqlP09X3sb5VboAOCs501D1AbgIqLgfxTAw6ttmagY8+k0k5DKFwuiMi+I8DyuyYtIuOVvrffRsdjj8Pd1gZVZiaSrr8O3sFB9L31NlxHj4LpdDCfcw4sl14C4ymngKlm7lcF7vHAvmOHP2XVvkswhlelpSHhwgtgWrEChqWnQGmaXeYXI+4RfzbPts5t2N6x3Z/Nk6JPQW1aLa6bdx1q02px0HYQ//XFf4XUSN626LbpGj4RRVwel2B8Y2uU1TFKI9EKpkBhQiFcXheuqbgG5+Sdg2JrMZL1yVM3UM4Fp25ZNLFJMp8dDbPo6WuTUXpuXLTJmIvM3Nlhihn64kvY1r0GbXk5lAkJSLnlFrTecQeMp5wK49KTp3t4M45IjqqPfv0oBp2Dgnjs2IrjQ8cBAEa1ETWpNbig4AIsSl+EqpSqqFg9e7weNNoa/cJRahagVqgxP3k+rp13rdCGI60aKfrQ2lZyVCWiznhSTqVIHePCucaN9Mr31yYIE6lKH5ruCQhi77sfRu/nWbgGqLxMSJEVo4kfPSARjC1A/zH5lwAwwJwhiMLcOnkk0ZovREXFvo9i2mnX/kDa6Rv/L/ppp4c3ClFRSy7w9R+AwtPnnJgMzr5xHzuGjod/BQAwnnoKUn5wC8znnDujhZfHZsPgps8El9VPN8HT2wsoFNDX1CD19tthOmMFtOXlsyrq2DXShW0d27C1fSvqO+qxt2cv3DzgVn5+4flYlLYINWk1yDHJ01SrUqqgUqii1i+ZmB7EOkapWGzsbURzf7P//4JKoUKhpRC1abVYk7gGCUe34Ym2Dbi6vw/rPB48XfYt1J18V+wGKV30DHcfqU1GzknAgivjvk3GXIRSW310P/ssdFUL0PXb3wIQHFWHvvgS9p07kPzd70ZrmLOGsRxVU/Qp/hTVRWmLUJpYCpViYusW4UxqPj7yMT5u+RhphjTUd9ZjR+cOfwsOcRVW7NtYmVw5Zj4/OaoSMSFSyqkxDTj3/lCh2H8MMsc4pUYQO2GNAAoCtX/RSjsFhAhm39FABNEmEYm2FkGAScfIFIILq18cBqWeWnImVoMSg7TTkOO/dqNw/OAayUmcJ95SWxvPOjusH4AqPR2ln2yYxMhiB+ccjr17BYfVTz7BSEMD4PVCmZgI4+nLYFqxAqbTToPSap3uoUYFL/fikO2QP0V1a/tW/wKpVqlFVUoVatNq/fPdjGynQEyKHnuPXyiK7TUabY0hdYyiU6qYnppvyYda4RNfvvnhSaMGzyRacFNvH34w5Dyx+UFk1EXPUdpk+E3Z5m6bjHiGUlvHgSgWRSEJAMalJ1M0UsKAcwANnQ3Y2r4VKoXKX9soxaK14JVvvBKVwv35yfNxx4Y7sKp0FQacA/jXsX/h2JDwBUjJlChLLMMlxZf4XeayjFkTPufO7p0y0ViXWYdHVjyCnd07SUjOZibrdBqOEVtgYo2UcjrUAbyxFjLHuILTgybYAp9j3DgMnsabdgoIYtN2RF6XKBWLg8fl+4tpRUwBpM0DFn3Tl3aaCwwcF37G0/9j3JdnTGKddtq6NVQ0rn5O2D6HopLutvDGK+6OjrDbpwvP4BCG/vU5Bj/5BEMbP/WPTzd/PlLWroVpxXKhV6Uy/p0V7W47dnbtRH1noA1Hv1MwDknSJaE2rRZXV1yNmrQaVCZVQk1RmlnDsGsYB20H/Wmp4n2PPSDIErWJKE0sxarSVbJ+jGPWMa6/H5uVXqxLMOGm3j6sSzChzt6FuvX3R57vvF5fLXuQQBTnttEWPTNrghY/C+Zcm4y5CAlJIiIdwx3++sZtHduwv3c/vNwLJVMi05CJtuE2mdupTqnDj+t+jNyE3BM6n1jzIRriNHQ2oN/Zj+d2PQcGBqVCictLLsfFRRejKqVqQi04IkGOqnOQiaadirgdgvDqbQJsTUFmAE2AvW/scxtSgG+/P/k2GVIWrhFuzqGAMPzqWXk00XYk1J1VofbVn+QBpecI7qdSUxtzplBLKUbyBtsDkbz374m/tNNwtZaFy+eUiAQAVWZm+IhkZuY0jCYA5xzOw4f9UcfhLVsAlwsKkwnG004Too6nL4MqNXVaxxkNeuw92NaxDdvat2Fb5zbs7t7tb7FQaCnEufnnoiatBrVptcgz582qFN25itvrRnN/c0Aw+m7Sfox6lR7FlmKsyFkRaK+RWIpkXfIJ/R/Y7OjED9NS8EhHF+rsDtTZ7b7nnahr3Ro+9dTWEmR6Ji56FvicsalNBiGHhCQBQJjEm/qb/KY40lQavUqPhakLsXbhWtSm12JhykIY1IYTcm2VcnzoOOo76v21jft69vnz/AsthTgz90zUpNXgyW1PonOkE9+p+g5+UPuDmPz8xBxi/f3yVFBAeL7+50D+aeFNbXqbQlM7ldqAY1zOSfLUndZtwAf3hKacXvDfQErpiY3bMRDUDqNZLhSHu+T7iyvF1lyg/AJfuqlUKGaM7wtA4XJBNIppp1FIBw1BFKvf/JtwXPF5tM9DIO2O20MdynU6pN1x+5SPxWu3Y3jzZgxu+ASDGzfCddSXvllaguQbvgXj8uUw1NaCqeM3Asc5x+H+w4Kbasc2bOvYhub+ZgBCHX9VShW+WflNob4xtQZWnXV6B0xMCs452ofbsb93vywt9VDfIX8Wl5IpkZ+Qj8rkSlxacqk/LTXHnDOpVmN+XHbA1oKdJqtfRAJAnd2BRzq6sFOrQd3/nhnYP6RNRkHAzZvaZBBjQDWSs5DxCDy31429PXv9wnFbxzZ/KoWYSlObVovF6YtRnlQeyLk/QVxeF/b17JMJx/ZhwcpZr9JjQcoCVKdWoyatRlbzIdYsrilfg3X71lHt4lwgFmmnIiM24KECYJT63gBMKPYPW99RAJjSR08/nejPYe8PcjxtkfdSDK49UWoBrUkQhZnVPoGYDwz3CNHDM+8dX3rseBHrPpffBZx1b/SOCwCbHhfalUhF4+GNQtppNF1bY0C81UgCoa6taXfcDsvKlVEa4eg4j7Zi8JMNGNy4EcNffAnucIDp9TAuXQrTiuUwnX461NnZUzKWWOD0OLGre5dfNDZ0NKDXIZhlWbVWf6RxUdqicdXxEzOXPkef3PjGJxpF91wASDeky2oYSxNLUWgphFY5CXHm9Qp/42V1ik2B20D49HUAgEIFVF4OzL/Ul4KaR20yiDEZbZ4jITnLCG7LAQRSTrPN2djavhVbOrZge+d2f9F2jinHb4qzKH0RChIm32Or197rT1Gt76zHrq5d/jFlGbNQnVbtb8FRllgW1oiHjHDmIJM1jxHTT6Wpp9KJdrT0U60ZOOfnPsFYMHGzmLEYsQWJxKCb3SbfX6WTp5r6zWx898ZUoHlTTAxkQoi1EU4cE49CcirhTieGt24VUlY3boTz4EEAgDovT0hXXb4chrqToNDGZ9TDZrehvlPojVzfUS9rN5WfkO9flK1Jq0FhQiGlqcYhDo8Dh2yH5GmptkZ0DAfKBcwac8D4xndfbC0+cSMkx0Bg/goWi7YWwC11zWdAQlZg7pLWKB7fDnz2G8FIzZIT3YVZYs5AQnIOIfZDjAQDQ3lSubAi6hOPaYa0CZ9H6qgqOsz97cDf8PXxrzHsHkZTfxMAX7/IpEq/cKxOrUa6MX3C5xDZ3LYZO7t3hq1tJGYBkdxOLbnAHTvlK7HSpsURjQAk6aeiCUDfUWDL/wmiU+REnU6ljNgii0RbC+AIErFqg9zl1H/zudkZU8ZnUjBVbqficSntVAYJyVBc7R0Y+lTo6zj0+efwDg2BqdUwnHQSTCuWw7h8ObSFhdM9zAnDOUfLQIvfEGdrx1Yc7jsMINAbuTa1FrXptahJrZnaHn3EpPF4PTg6eFQmFht7G9Ey0AIv9wIANAoNiqxFMrfUEmsJ0g3pE1skEPvuRooqDnfL99cmBOYwv1As9D2m9FMitpBr6yyHc47WwVZs69g2qoh8+pynUZ1aDbPGPKnzDbmGoGAK3LL+FhQnFqOlr8WfymFWm7EkYwkuL70cNak1qEyuhE51YqYiZIQzB+k7GmH7EeDJkwTR6JEIwGAjAOlKbGI+YMoIn96ZvXhiaaecCxHDcG0xIglFpQ5IKhQm+bylgNcFOIeBpWuFMRqSo+NmN9Vup2LN5BxzOyUiwz0ejDRsx+BGodbRsXsPAECVkYGEiy4SxOPSpVAY48vq3+VxYXfPbll9o1gCkqBJQE1aDS4pvgS1abWYnzz/hOc6YmrhnKNrpEsmFhttjThkO+TPnGJgyDXnojSxFOcXnO8XjXnmvPG1MuNc6P8rFYdSsdh3FPAZLAEQUk5F99N5K4PmsgJyPyVmLCQk4xAv96Kxt9HfnHhLxxZ/igUDC9vfMdOYiWXZyyZ8Ls45jg0dE1JUfWmqonsrAOzq2gWDygCDyoCfLv0pLi66mFJ3ZjPRqF/0uCR9qIJSdxgTJuBgFGogtRwoO983wRZMbiVWdDoVESf9USOK/fJjqI2BXlj5p8gji/3HhBRdhVIQj5WXBKJ42YsnPt7ROLxRiEQuv4vcTokpw93bi6FNm4So46efwtPXByiV0NfWIPXOO2FasRzasrK4mg/6HH1o6Gzwi8adXTvh8C1c5ZhysCx7mVDjmFqLImtRdIxRiJgy6BwUahh9glGsZ7Q5bP59UvQpKLGWYHX5apRaS1GWWIZCS+HYzvBSJ+/ew6GZMsFzhiFFmDOyFwNVV8jFYkK24JJNEHEG/a+NA8Ti/S3tW/wT3IBTiACmGdKwOG2xkKaavgj7evbh/n/dH1Ijedui28Z9rj09e/ztN+o76tE50gkAMKgMWJi6EN9f+H3UpNZgQeoCXPnWlWgbasNNC2/CyuKpMWsgponxts3gHBjqlKScNklEYzPQfxTwLUQAEESiNS/QU7H5cyF6JxKNtFNZRHGcQlFjCgjD/FND009HWyHOXgToEmLrdAqEppkWnk5pp0RM4JzDvns3hjYKKasjDQ0A51AmJcF0xhlC1PG006C0xIdxB+ccRweP+lNU6zvqccB2AACgYipUJFVgddlqLEoX3FRTDfHfdmQ24/K4cLj/sNz8prfR33saEL7DlCSW4Oy8s2W1jIm6xPAH5RwY7IgcVQwupVDpAm0x8k4JSkPNF+rwCWKWQUJyihmPo+qAcwANnQ1CtLF9C3Z27fQX7xdZinB+wfl+Y5wsY5ZsxbcssQwKphh3W47ukW5BMHbWo6GjQXaubFM26jLrUJMquMyVWEuglLQL2Ny2GXa3HTctvAnr9q1DXQalnc5qIrXNeO9HQpqjdJJ1Dcv3M6ULE2reUnm9YmJBaB+qE4l6Tkoo+sbicQG11wfE4mRTiWKdcgpQ2ikRUzwDAxj6/F8Y3PgJhjZ+CnensKioW7AAKTffDNOK5dBVVYFF0x04RojO4eJi7LaObegaEVrmmNVmLExbiAsKLsCi9EWYnzw/Kn2Kiejj5V4cGzwmE4uNtkY09TX524epmAoFlgJUp1XjSuuV/rTUTGNmaBTZOQS0744gFpsBd9CcZ86Sl1JIo4pjOXkTxCyEzHamkEiOqncuvhNJ+iR/Kw4xdVTFVJiXPA+L0hahNl2wC4+4cuZjNIOaG+ffiAO2A7JoY8tACwC5UYDYgmO0FVhyVJ2BRLNthtcjrLZKJ9aNv4q8v9oYKhDFydWaB2gm+aXshISiObzr6XAXsP4XguAqWhE78xjxuEu+I6ScUpRwVhJvZjvdzz4LXdUCGJee7N829MWXsO/cgaTvfAfOgwf9DqvDW7YAbjcUZjOMy06DafkKmE5fBlVKSjR+lJgiLsiKxjg7unb4ncqzTdn+FNXa9FoUW4pli6TEzKDX3htSx3ig9wCG3YGFyixjlqy9RkliCQoTCqFW+lqWeT0+U5sIDqhDnfKTasyhc5k4n1nzADXVwRJzD3JtnSGM5aiqV+mxMHWhP1V1QcqCCa+KSgXd/JT5WLdvHZ6qfwrF1mI09zdj0DUIQOgVKbbfqEkTTHEm0teIHFVnGCfSNmPEFjllx3ZEnl7KFAAYwD2hx0nIAu7YPbnoXTSF4ngiiuR0Oid5Y1srfvXBPhyzjSDLqsePzi/HZbWT61kYb0Jy6Isv0XrHHch+7DEYl56MwY0b0Xrnf8Bwch0ce/fB1doKANCWlQl9HVesgL6mBkw1cxOYOOdoG2qTRRsbexvBwaFgCpQnlgspqj7xOF7ncGJqGHGP4KDtoFw09jai2x5wLrVqrTKxWGoV3FJNGpPP1KY5/HwWMpcphTYYYcViAWBIIlMbggiChOQ04va6sb93P7a2b8VDXz0Ucb9XLnoF5UnlUCvUJ3Qe0bm1vrMeHzR9gA1HNsheL00s9QvH2tRa5Jhz4soEgRiDSG0zzJnApb8NLxaDeyrqE8P3oRJ7Ku762+R6PIa0x2gen1DUGIWJfd4l4xeK40G8ZsvvAs6698SPE45Njwt1klLReHijkHIazryGiDlvbGvFj/+6AyOuwGKIXq3Ef69aMCkxGW9CEgAGN23Cke/fBKjVgEOoeWZ6PYynnALT8uUwrVgOdWZmNIYbE8R5VdqGQzScM6gMqE6tFvo3ptdiYcpCSlOdIbi9brQMtARSUn31jEcGjvhNAnVKHYqtxSixlgQijeZ8pDhGwGwRooohc1mSZC4LEosJ2YDyxL5nEcRchdp/TCF2tx07unb401QbOhsw5BoCACiZEp4wEZ1MYyaqUqomdB6pKY7opirWexhUBmgUGji9TlxUeBHuXXrvpFt+EDMQzoGhLp+VeBgRCQADbcCLq4THSk2gp2LOSaGtMnRjmGSIYnH9/eGbG9v7QqOIvRKxGNweQ2MKpAvlnybcOweBL54CLn0aqPgG0PRp7NJOyel0RhGLaKGUX32wTyYiAWDE5cGvPtgX1fPEA8ZTTxX+fjgc0C1cgNTbboPhpJOg0Gime2hhGXIN+csxtnVsw/bO7f70xnRDOhanLUZNWg0WpS9CqbWU0lSnGc452ofbZemoYnsN0YNBwRTIM+ehPKkcFxddjFJ9GkqhRY59CEpbC9DVBBx4zWdq0yo3aFNqAnNXTl1oSYUuYep/aIKYIcR6Lg2GhOQk6XP0+VdEt7Zvxc7unXD7egOVWEtwcdHFfmOcLe1bwtZIjsdRdSxTnJMzT/ab4vTae3HXxrvwb+X/hnX71mFP9x6qW5xuTrR+0TXiE2NBaTviLdjUJhh9EnDVixJTm0kYAdj7gbRK4MKHA+Jw95vA5/8jjC94VVhtDLix5p8yftfT/FOnNu2UnE6nneBoYattBD/+6w4AiNoEeMw2MqHts5nhzV8BCgVU6elwHTkKplTNKBF5fOi4zE11X+8+eLkXDAxliWX+3o21abXINM3cyOlcoN/ZL0QWew/IahlFZ3lAcJcvtRRjaf75KFUYUOrmKBruh7bvKLD7X0DvK2EM2jKEeSv/tNDIYqT+wAQxx5mKuTQYEpISxuOo2j7Ujq0dgpvq1o6tONB7ABwcKoUK85Pn45uV3/Svjlq08giPeKyxzuHlXhy0HUR9Z73fGKe5vxlAwBTn6oqrhfrGIFvyzW2bcdfGu/ymN3UZdWSCM92M1jaj6kpg8HiQQJSIxsHj8mOpDYHJtOiMwAps515gw4Nyhzm1HrjwIaDgtPGN0zEYJvVUElEc6Q0diyFZsDxfsCZUKJ5orUms3U7J6XTCzIZoYZZVj9YwojHLqo/K8eMFsUYy7w9/gHHpySE1k1ONx+vBAdsBoS+yTziKXgJ6lR4LUxbiewu+h0Vpi7AwdaFQE0dMOQ6PA4f7DsucUht7G9E+3O7fx6wyosSQgQtNJSj1KlDqGEHJQDcszS3AYFA6tt+grRAoOjMoqpgnzF8EQUyI6ci8oRpJH5EcVW+uuRlmjdmfqto6KBgRiHUYi9IXYXH6YlSlVEGvGv0PXySDmm0d21CTViPUe3TWY3vHdgy4hNW8RG2i3xCnJrUG81Pmj2qKQyY4M5BfVwqpOcEoVELhvygwAQBMSBm1BtV1iDdjSmRxtn1d5LRTQLA5tx0JLxJtLcBwt/x4Kr1cHHo9wM7XgXN/Dsy7FOjYDbz+b+R2OsuJVW2hlMJ73kW4mYgBOPxg+NZFE4VqJAVGc21N/u53ozHEURl2DWNH1w5/fWNDZ4PfBC5NnybU8fvqG8sTy6FS0Hr3ZPnjzj+iqq8LdZtf8M8Pm+u+hZ2WlJDvBV7uxdGBoyFuqS39Lf7SHDVTokhtQSm0KHE5UTrUh7LeY0h32uGfnZgCSMgJrVEUb4ZkMrUhiCgTq7mUzHbGwViOqkm6JH+K6qL0RSc0wYmOqvfU3QMAeL/pfWw8uhFe7vUXmpdYS/yisSatBnnmPDLFiTWTbZvhtxdvCh9VHO6K/N5Tb5VMtIWCAFSN3z1XhmtEIhSbQmsVg8eh1IY6nSbmB+oWjamhEz25nc44Yh0tPO3Bj8JG8rKtenx2z1lxcw6AXFung87hTpmb6t6evfBwDxgYShJL/C2natNqkW3KpvkuBmz+7GH8cN/zeKSjE3V2BzbrtPhhWip+XrwautLzA6KxZz8O9R3EiG9xkwHIYVqUuL0oHRlE6fAAypxO5LrcUANCeULIoqfvuSWXTG0IIlZ43ELrmsHjwEC7cD/YgdM+KkKrIzSoNdm5lMx2xsHxoeMRX3vrsrdQkFBwQhOctAlyfUc9OOe4+9O7/a9XJFZgee5y1KbVYkHKgpB0WCLGjJZ2KhWT9r7wNYqR7MWtucJkOu9iwe00uH4QECba834x/rG6HT6h2IwQ19P23YDP1MmPQgVoE4DMaqDiIrlItOYBxrSJ15lQ2umMYrbUFv7o/PKw0cIfnV8etXMAwjWZa8Y6U4lYliEVjmIWj06pQ1VKFb5d9W3UptWiOq0aCRoyRZkKlnz5PB5xduKHaSlY0z+IdQkmPNLRiZzWJ3B+018AAEleoNRhxxVOJ8qcLpQ4XSj2AAZrntAWI61ALhSt+YDeOn0/FEHMRpzDflGIgePAYHvgfrA9IBqHuoAwsccfKc/Dj9m1GOGBmvdYzKVSSEj6yDBmhI1IZhozUWgpHPdx+hx9sibIO7t2+tNlM42ZOCX7FHzW+hn6nf343oLv4dZFt0btZyBOgPX3y9tZAMLzd+8E9r0XEIvB9YFiq4zMaqDy0iB78RxAKfnVyj8tfNuMs38mP6bbCfQflTudSsXiQND/T4VKEKPWPMGgpvkzYOn/A0rOFf7wvPcf5HY6jUyFc9psqS0UxxqN68U5x5DTg74RF2zDTvSNuNA/4oJt2CVsG3FhQbYF31hAJi2TZcQ9gp1dO/1uqvWd9X6TlWRdMmrTanFNxTVYlLYIFUkVgSbxRExwe91o6T2I/ce+QGNHAxptB9E4chzv9h9FHYA1/YN4JtGCm3r7UGd3gAN41uZEiSkHydai0KiiORMgB1yCmBycC98hI4nCgfbAtuA2aIDwXc+YBpjT4UnIhjO9BsPqZAyoU9CnTEIXS0QHt6Ddk4BuO0NFax92t/XD4fYi06LD3RdUkGvrVHDbotsm7KjKOUdTf5O//UZ9Rz0O9R0CAKiYChVJFbiy7ErUpNWgOrUaGcYMbG7bjC+OfYGbFt6EdfvWYWnmUjLBGY2x6v4mwkivPJLYczhy2wzHANC2XZhMsxZNbiXW3zbj50Bfq1DnWP4NoKsR+OtNAcHYfwyyFSamBCzZwvmKzw5KP80LneTFtNPt68jtdJqZKue02RwttLs86Oi3wzYiCMC+YZfksSAQRWEovi5uc3sjl2yoFAzXL80nIXkCdI10BURjRz12d++Gmwsu5cWWYpyXf57fTTXXnEtpqrGAc/DhHnS112N/21do7NmLxoGjaHT24iAccPquuYJz5LvcmO/2YEipwh61EusSTLiptw/rEkyos9tRp0nBybftnuYfiCDiFI8bGBIjhx0haaYy0ehxhrzdqzbApU+DQ5uCIV0x+s116GVJ6GIWtHutOOa2oMVlRqvDANuIG7ajLgw7Q1sICt8bbVAwGyx6NawGDeZlJsCiV+PhKxciPUEX08tAQtJH+3A7vln5Tbxz6B2/o+rFRRfLHMnsbjt2de/Cto5taOgQWnHYHDYAQIImATVpNbi46GLUpNWENd8RayTJUXWciGmnYiQvUtqpiMcl7BMpBTU4vdSQIvSjCvMLDksOcOvWiY3X6xHEYHAksekzQdgNdwPgQl771ucRMNbJE4SYNO00MR8wZ8kjm2NBaafjZja4kAIzP1ro8XIhGiiKvggRQqkQtI0I+9hd3ojHZQxI0Klh0at9E6caWVY9rHr5NuGxRrg3qGHVq2HQKEngjAPOOQ73HZa5qbYMtAAANAoNqlKqcMP8G4Q01dRqWHXW6R3wbEIylw137UNj50409h1Go70djZ4hNKoUsCkDi4ipHo4ypsPJ2iyUmvNRmlyJoozF0KaWAaZ0bP78V7IayTq7HT9MS8Uj5TeAvnkQRBDOocgRQ4k45ENdYGHSS+1qKwbVyehTJqNHUYku46lo81pwzGNBs9OMJrsJxzwWDNn1wEDo6TVKBawGYQ6z6jXISlSjMluYv6wGNSwGTeCxXtjHYlDDrFVB8flvgOxFQKHErf/wRuF7WriMrygQUyHJGLsAwG8AKAE8yzl/MOh1LYAXACwG0A3gKs55E2PsXAAPAtAAcAL4Eef8o1iOtSq5SibqNrdtxp0b7sS1Fdfi4a8eRn1HPfZ07/GvvhYkFOCM3DNQm1aLmtQaFFgKoGCj15vt7N4pE411mXV4ZMUj2Nm9k4RkOCKlnf7jXiESFywU+46O0bS4QJ66ozWHilXAl3b6n6Hj8XqFPyCiSBT7O4rCse8o4OshKsAEYaezCGmpC64ECpYJgnbjo8CVfwRKomckQmmn42O21BUCUxMt5JzjnMp0nFSY5BeCfcMu/Hlzi0Qg+sShTwSKInHA7h712AaNEla9Ggm+SbEgxQCr3gqLISAI5aJQmDTNOhUUChKDJ0q4Vlfn5J+DXV27/LWN9Z316HMIi2+ie/iVZVeiNq0WlcmV0ChnTt/JuETMkOk5DPQ2wd1zCC22A9g/2IpGdz8a1So0atQ4qg6kA+tVDKW6FJxtzEKptRRlaTUozT0NVnPWqKfaaUkRRGPfC4D9KOq0aXikXHBtpW8exJxATC+VpZYKjz39bfD0C8+Vwx1Q+lykpXighE2ZiG6WhE5uQZunGkfdCejgiejkFnRwKzp4IrpggcsuSCuTVuWfv8Q5LEWvQYlBIgr1moAg9AlHnVpx4oud2YsiGxbGiJi5tjLGlAD2AzgXwFEAXwG4hnO+W7LPzQAWcs7XMsauBnA55/wqxlgtgHbO+THGWBWADzjno37Di4aT3ea2zfj+h9+HWqGG0+OEF4Io0Sq1mJ88XxCNvjTVRF3ipM5FRMDtDEQVX1w19v7GtPDW4v76jnGYyUjTZxMygUU3AMkloZFF25GgVh3i+fMDvROlzqdSB1ZyOx035EI6McZ7vZxurz/1s08i+GySlFBp1NAmiRKOliqqVrIg0acJKwJDIoR6NTSqqWsq/rtPDmJhjgWnFqf4t31+sAvbj/Zh7YriEz5uvLm2hmt1xXz/xDmvIKHAn6Jak1ZzwmZzcxqP21fz3uQXi+htAu89jM6+ZjRyOxrVajRq1GjUaHBQow6kpYKhQJuE0oQClKbMR2n6IpQmlSHblD3mgjVBSJmKWv1pxeMChjrBB47D0XsMI73H4LK1wdsviETVcAe09k7ond1QcVfI24e5Fu3cig4kopNbfaIwURCGsKIbVti1KYAhGQkGrSQKKI8MiqJQOtepldP0uxqD75vT5dpaB+AA5/yQbxB/BnApAGlC/qUA7vM9fh3Ak4wxxjnfJtlnFwA9Y0zLOQ/6Fh/lAWfWwag2ot/Zj0JLIa4sFVZfySQgAifSNkNcFeo9HD79NDiqGA5DCnDD24Jo006gObV4bltzwNBmz1vCdrUBUOmE1NQN/y05V7JwnvQqoa7R73zqE4oaw/jOTWmn42K2RAtjFSnknGPA4Q6kgQ67oFYqcPOZxf6o4L8OduP9ncd90UE3+oadsI1Eqq0IYNap/CuiFr0amVZ9YMKUiUL5ZDndqaKccww7Pei3B1Jk++1umTjuH3HhYMcgHv3HPhSlGHFZbQ6qcy34wcvb8OS1tdM29ungN1t/IxORAMDBYVAb8Mtlv0RNWg2SdEnTNLo4Q3Tz7gmezw4DtiMYhtcnFNVo1OjQaDBhv46hT5cAQHCsTdMmojSxDCcnz0NpYilKraUoshaN2i+aIMbDVNXqRxOPl2PA7kJfXx+Gelrh6GmFu/84+MBxKAY7oBrpgM7eBaOzCwnubph5PxTgYAB0vhsAdHMzOrhVEIcoRTfqMKBOhl2bAqc+DW5jGrgxHQaTRZYuWmJQY4mkHMKsjcPsl1h/3wwilkIyG4DUyeQogJMj7cM5dzPG+gAkA5A2vLsCwNZwIpIx9n0A3weAvLy8SQ94c9tmKJjCb4RTkVSBBakLJn3cWclobTMqLxu9VjHYlUqMKuYuBRYWAEmFwvPjO4B//mdo2ukF/w2kV4Yfl71fLhRlaagtgDMoIV1tBNx2IOckoPRcoV6y4RXg/P8G5l8+MaE6GrMk7XQ21BbOhLpCh9sjqxWU1QtKIoLSaKFt2Il+uxueUaKDGpUCiZK6iWyrHvOzEiQrqPKooSgSE/RqKKdxsnx6wwGUpJpRnmH2C8LNh3uwr30AtbnWgCCUCMSBkfGZ6wCCSLbo1ciy6HGwcwj/OtiF//30EJ68tlYWoZypRHOui9Tqatg1jLPyohstj3ukPYLDiUWfm7cbQItahf2mJDSak9CYnID9yWVo9QRaMhlUBpQkluAcaylKE0tRlliGUmsp1ZYSMWOqavXDIc5xokmabdgF25AD9v5OIY108DiUQx1Qj3RA7+iCydUNi6cbyd5epLA+5LPQOdrFleiGFT2KRLSqUrHfUAG7NhVOfSq8xnQwcwZUlgxorRmwmIywGtQo1atx0mTTReONWH/fDGJGm+0wxuYDeAjAeeFe55z/HsDvASHdZzLnEo1wHl3xKBnhjAXnwD/vC1+/+Le1wN9uCqpV1AYcT/OWStJPC4XtGmP48+SfKrTZkLq2rrgbyFgA7P9AUqMoEYt2m/wYamMgilh4ujwF1ZonuK+KaQD9rcIv39Uvk9tpGChaKCdcdFA0ixGjg8tKUvzPf/fJQTz0/l70jREdFI1kpHWBuUkGWPQqWH31FAl6scZCI4sW6tTTZ9Xv8njRPyJPkxWFn3/7sCsQOZREC/tHqaV8f+dxKBWB9NkEvRoJOhVyE/Wybf7HEhMei14Nk04lE8mnPbgeGxu7cOtZJXEhIoHoznWRWl1lGDMmc9j4xTEgd/KW9QhukfUI5goVOhNz0WhJQ2PRIuxXcjR6hnDI3gWnbz8lcyDflIGqxFJcLhGNWaYsSkslppTJzqditodNLHkYdsnq4m0jwrb+oRFgqB2qoQ5o7V0wOLtg9fQgjdmQxmxIZTZUMhtSYYOGhc59I0yPAVUyhvUpcGir0GJIAzelQ5GQAZUlE/qkLBiSspGQlIYMlQpz9C/V+JiG75uxFJKtAHIlz3N828Ltc5QxpgJggWC6A8ZYDoC/AfgW5/xgDMcJYJYZ4USjZYbHJbw/OAW157Ag2Bx94d/HPcIqyInUKgKA2yHUItqagK//TxChOScBpjThvG/9QL6/ShcQh9lLguoV8wFDkvDNfDQKlwPL7gQ2PhzXaacULRwfwdHCTIsOa88oRlV2ArY094SNEEonT6kIGi06qFUpZK5quUkGLJCmiEqigtL9ptNIxu7yyIXfiAt/29aKJKMGyUatf9vhriF0Dthh1Kr828ZKndWqFDKBl56gQ1m62S8EewYd+Nu2VpxRnoaNjZ249xvzsLwsNarps58f7MKIy4tbzyrBi1+2YGlxctyIyWhxIq2u4hqvFxg4FjmqONwt319nBZIKMZwxH40lp6FRrcF+bkejsweNA0fQ5+wDeBswDKTp01CaWIqlief7BWOhpZDSUokZQaT5NMmowZv1rbI6eVEU+kXjiBuukX5Yvb1Ig80nCnuRyvqQxmyYj16kKYTHVgxAIXUvVQg3uzoRTn0qPMZMwFSLEXMGPImZ0FqzoEjIAEzpgCkdeq0J0Zvh5zjTUOYUS7MdFQSznbMhCMavAFzLOd8l2ecWAAskZjurOOdrGGNWAJ8A+Dnn/K/jOV80zHZmBZFcSFc+ESomR2yByTSkv+JRQRSKSB1QEwuAHa+FRv8AoVbyjp2RxycaEAS7noqPB0JXymHKANIqhDE0bQKW3gKUnSeMx5Q2tlAcC3EFZ8l3hDSAOIsUAqHRQkCIsv33qgVRE3mF97wbxugaYAAOP3hRVM5xoj+H2IRe6ioqTQ31T5JhBOJ4ooMhzqG+WsJw0UFxv6mIDgYbyHDO8fG+Dnzd1IuV1Vmhkb+giGFwuqjTPXp9skmrgk6lQO+wC6XpJuQlGUIigsJzVVAEcXzX49f/2IcnPjqAW88qwZ3nRbdP5ecHu/w1kacWp4Q8P1HizWwHCO/aelFRdH6HpwXHoK+koSlMVLFZ3uKJKQFrrn8uc1vz0KI3Y7+CY7+7D42DR9DY24jWwcC6t5iWWkppqcQ0IrZT6hUXN30CsHdIPqcJ4tCJo73D6B4KNpjhMGAEuaxLiBbChhx1P3JU/chQ9iEVNiTxXlg93dB6Q0UoV6jhNaaBmdOFmykDMAdEIczpwnc2UxpA3iKzhtHmuZgJSd+JvwHgcQjtP/7IOX+AMXY/gK85528xxnQA/gSgFkAPgKs554cYYz8F8GMAjZLDncc574h0LhKSPh6rEuoTg9EnAotvlIvFYCFoSJFHEsVaRX9UUfJF8PVvA3velk/QSg1QcTFw/gPhRaKtGehrlQtUpgAScuRup/7HeUDXAeClK8jtdAxmixOp2+PFn786gifWN6JzwIEkowYXLshASaoppDG9TdqUfnj0OjlpXybROVTqvhYpQmjWTX3toNcrpMz2SwRgsPgTby09w9h1rB+pJi2cHi9sw06MVi7IGGDWqmTtNaSpoKGCULjf3z6AW17aivQELUZc3pjUForC7vqT8/Dily1RPwe5tsYxXq/Qzy1SVHGoU76/1gIkFcjmM24tQKchAY2eIezvO4TG3kY02hpxyHYITq8wjymZEvkJ+X7Tm7LEMpQmllJaKhFV3B5vUB28UP7QOxwkBn3znCgMRysBUDEPCrVDKNQNIk/djyx1PzIVNuwZNOPP/VXo9JqQwXpxl+pVXK78NPQAGrMg/kRRaPaJQVOGRBymC98lx5thRswapk1ITiVzcnIFAvUd4uT64f8XeV+F2ifSCkKFojUf0CWMfT7OgaEuYPcbwD9+KqzuuoaEY3vdgtj0Bv2xM2cG0k2DW2VYcsZetfrogUDa6Vn3jj3GibDpcV/zVolojEHz1linnc60aKGYIilOgHIR6PRPkn1BdYVj9R0URZDUXVRsNB8sEqXpolNdaP/UhgMoTTWhLMPsF31fNfVg3/EBVOda0T/ijigSB+yuUcWgUsGQoAtE/LycY9/xQZRlmHCgYxCX12ZjYY5VJghFwTiZtNl4jBZOBSQko4RzePSoolviNCsuQAaJRaHuvgBDKg0O9B3E/t79gmD0icY+SUmGmJbqjzAmllJaKjEh3B5viBgUBKGkvZJUDI5jnmMMsvYSaXqOXFU/slT9SFfYkIJeJHl7YXZ3w+TohNbRCfVwJ9hwF1i4bwGGZLkYlEYMpZHEaBkLErOS6Wr/QYRjovWLXq+Q7immn8om2DD1HUwRvn2GORO4Y5c8qhiJEVtoNNHvgtoiCEcpKr1gSFBwmlCnKOulmAuodWFPMy4ObxTSTePY7XQqTGpiUVvIOcegw+1PB00xabFmSQ7erD8G24gLJq0K87PMeG9HG17e3CIThXZX5BRJpYL5HUStejVSTBqUpJkkKaMSExnJ8wSdCqop7Mvk9njDtpEI9zhUDEb+ovDBrnZ/70Ux4pdk1KAwxRgq/qTPDYLJjEmrChHFpz24Hjtb+2Mi8gBB6L34ZUvMagu3H+2TicZTi1Pw5LW12H60b8YLSWKccC40AY8UVRxsl++vMQnCMLVMKGWQCEVYcgGVBm6vG839zWjsbRRE474NEdNSz80/V5aaatFapuxHJ2Y2Lo83RAyGE4B9YlrpsLAIOuCI/HdeIQpC31wWPM+lqJ3IUPYhmfcg0dOLBHc3DM4uaEc6wAbbhd+HgeNApy304EzpixamA0l5QN5JQZFEn2BseBXIPSn8QnnVOPp0E8Q4ICE5lQTXL4otM9xOISoWXK/Yc3j0+o55KwMTq3h7987wKaf5pwZEpHMoIAr9QrEp0C7DHmSko7UAiXlAcjFQfJY8BfWlKwW301hEC6fIfWo2mNSM5kQq1lX4J0YxMugrqA8usg/UXoxuJuP2etHcPQKrwQ2LXo2CFIO8tYSkjlBaWxhOCMUKMYVIevvr1qNINmqRbNL4tx3qGkJHvx1GrdovEAdH+ZIACK02RjOP6R1y4qUvm2HVq+Hycvz0ooB5jF4dvd6LsTaQCY4OLi1Ojnq0MFxq6anFKSQi4w3XiG9eaQojFpsAt3SxiwEJ2cK8VXquRCj65jSJURrnHB3DHWi0NaKxbSMadwsRxoO2g3D53VKFtNQFKQuwqnSVXzRSWurcwen2Bs1noWJQni469t96BQOsvh6DFoMaaWYdytLMvkXOQPaL1aCBVadCknIIVk8vjM4uKIZ8YnBQct9+XHgcvCAPCN/VRBGYXAIUnC6JJEqEoiF5fEGB3JOE70zmTMFE6oy7A9+hCCJKUGrrVMA5MNgB/G4ZMBSxzDOANiF8+mli4dipoIc3Aq9cI/xBGukVWmt4HEKPRteIIBSD60lUennKaXCtoj4x8rliaVIzBWmn8WRSEzxJBtcKbm3uxdYWG0ZcHqiVDGadCm4PH7WuAgiTLipJFZU/l4vCWJjJhKtj+7SxE5sP9+Cy2uzQaOBw+Iig+PrQGE6iOrUCerUS/SMulKSZkJtkCKkT9NcRGuTbpts8BpialNBY1RbOFuZUaivnwvwRtl3G4VCzNLUxzDxWIMxl1lxAFZpGOuQa8qeijpqWmlSKMmuZPz2V0lJHJ9YLptHE4faMKQb7hiXRQd88ONrf++BMmESDJrwYlC6CGtUwaVSCI+lwl/D/e0DogRi4F4WiL4oo9taWojFJooWj3OsTJ28eGIzY3ixWPhPEnIBqJKcCt0NYifVPrEGrsa7h0d9/xR98k23h2H9MvB6g/5gk5TQoDbU/qMsKU0YQir7HxtSJ//GaIpOaWE9+02lSk2bW4jdX1wbSacLUWozXXVSaRpOgVyMxKEXUGlYoTl26qCtMZDCcGDzcNYT6IzZkWnRwezl6hpxwjOEkqlcrI6eD6tWw6FUhInB/+wBufaU+rs1jABJ5M4G4FJKjlViIc1mkqGJwJMWcFVksGlMizi0haak+4RiclioKRUpLPXGmYsE0HOFq5QOiMDDfBbuOjjbXqRQsUP9u0CDRIKmL10sEYZBIDJsJ43FJRODx0OiheD/YITcJFNFZw4tCf3ppxsyoPxRNGGOROUbMCUhIjpfRJlfOhQhfz2GfSBRrFpuE+/5WQBp3UhvkNR1JhcCHPwsvKHUW4J6WwHP/qq807VRSp9h3VNYkOZAiJBGHXz4DjPQAJ68Fzv/l+NIgJsIcjxYG1w8G11FIJ8uDHYM43DUU9jzBqJVMtioaPEFagldMDcIKq0kT+96Dv/34AIpTjShLDxjIfN3Ug33tg1iYbZlUZNCgCYhBADjYOYiSNBMOdw7h4uosLMi2RBSKGtWJCWEyjyGiQdwJyXAtopgSSCoWRGL/McjmMpU+coaMNW/MGnhZWqovwri/dz8O9R2SpaUWJBSEiEZKS40Ok10wtbs88oigTBhKXUedsjkxuKRDiiAIpfPb6GLQolcj0aiBcTw9ZV0jcjE4cDwoiui7D/aYAAAwYXE92JwmWDCa0ifn/zBVzIL2ZoSAw+3BkMODIYcbgw635D5om9ONv21thcfL8dF/nAGLYfJtWMhsZzyEq1984/8BXzwtuJD2NgGOfvl7TOnCZFqwTDLB+u7D9TccaAM+fTT03BnVwLs/lItFd9AffWOqIBKzFwHzL5enn/qMB/wc3ghs/n3AoKbiouj/4Vh2uxAtfPAjebRwWfTOMxW1hZlWHY7Z7CHbE/RqPLG+MWyjXnGiHK3dhF6t9E9+aQlamLRKHOgcwrDTgwSdChdUZeDM8rSQ1JoTrZ0bb2Qq2EBGTIuNZBxjGx6fGPxwd7s8MmhQI9fXYzDcbSwxeNqD67GnbYDMYwgi2qy/Xy4iASHaYmsC5q8KFYsT6NUbnJYquqb2OwNzZ5pBcEs9NetUv3AsshRBo9SMcmRiMhwLIyIBwfjtlc0t8nkuxHV0dPO04MXP3CQDFowiBq0GIa3UMB5BKIVz4TtYV6TUUkmKqSQN2o9CFRCAiflAbl2YaGKm8F1LOUu+Gk+RzwQRHo+XY8gpiDtB6MkFX9htzsC2IYcbA3a3/xguz/gCfxqlAl7OoVQwDDrdURGSozFLfluiQLjJ1esGjm8His4E8pbKhWJivlB/GAnncMC8RhpZNKQIufZSmjYCbQ2CoU1KqWA8IGuVkTf6uaRMoUFNrJ1II01+4baHGMoErZ76o4QhaTbBzXoF+kZc+PWH+2HSqmSTX0Zmwqj1g1afSIplM3rxZ5UKvkGHG999/musXJgFi0GN/ccH8NnBLpSkmfBm/bFxG8gEp4nmJBpgyQo87x124oV/NSHRoIbLw/GziyuxojxtUpHBYMg8hiBiSN/R8Ns9LmDVM+M6REhaqk88StNSjWojSqwlOK/gPEpLjTJivbys3YTvvleWLirsw5igw8IhztvSXrtWgwZ5SQYszAmURyRK5jiLIZBWOmnjMM6B4Z5QURguihi8wA4IEXMxapg2T/i+Fi6aqE+ae/0PW7fKv/sVLheet24lIRkGzjkcbi8GHW4M2iOLu8EgEejf5hSig+Lro6VoS2EMMGlUMGpVMGqVMGmFx0lGA8xacbsKJq1S8jhomyawTaNS4Kpn/gVAyDqINSQkRfqOhN/udQPXvx663eMCeg6Fr1HsbQ411VHpBUGYvUhIWz22Dai8DFh2x+iGNhNliv5wxCpaKG3Um2zSoGvQGbKPTq3EN//wpaz2YixDmQSdSmYWk5dk8E+KLT3D2LC/E7ZhF1JMGnzv9CJcsTgHFr0a6ijUD4aLFn7W2IWvmnqwalGOPAI44pSlhYoieLytJV79+giUDPACyLbq/EJ4XqbZ31MxXM2gGCHUqsYWwAk6lT8l9MoluZO+PlKmQuRRtJCYy/wxPQdVfR2oswdMQTbrtNhpScO3g/aVpqVKezKGS0uVuqWWJZUhy5g1pb1b4xExQ6TX7yIqCEHpYmjvsNxYZixTGWmEMNGg8WWGqLCl2SbLotGoFLjt7FJcXpuNREMMeu163MJ3nXAppbL79qBSHR/ahEC0MHtJZIManSX6BjWzhSlobzbduD1eQbw5g0SeTAh6glJB5YIvIAQ9ozrVS9GpFX7hJoq4VJMWBclSkRd4LBWIwdui6eIuft+UEmvfBBKSIsbUUDdTQCimbvhzUD9Fn6GNtF8jUwp1lYn5QNn5vmhiQSAFVUwPEiOGYtrpSd+JnogEpiTlFBg7Wuh0i+YqYu1EII0ypNZCrC0coy+TiFGjwIDdjSSjBkUpxrCGMlIHtgS9GsoI9YO/++Qg1pyUi8evrvVv+/xgF17fcnTMXzqxTjI4BVQUwuLjg52DeOSDfchNMsDj5egedPi/CDy+vjHssTVKhUzspSfoUJ5uDkkJtQYJwst++xmO9dkpJXQUKFpIzGWqFn4LP9z3PB7p6ESd3YHNOi1+mJaKX5ZejfqOelmEcay01LLEMhRaCud8WqrXyzHgcIcKQX+E0BVWLI62ACptO2E1+OaADDOseiESaDUGxKI0khiphjBqxnVux9gGNQPHhcyrcD2t9UkBEZhSHiZ66LvXGCY+NmLGwznHsNMjq++TR/4EEShL+wyTHiq+fywzPhGVgklEnBDFM+tUyEjQhY32yUWfUiL+VDBqlFPa03oiLMyx4Acvb0OaWQuLXi1bnI8VZLYjsn0d8OYt8v6LwZgzQ51PxfuE7LHz6qfA6TTaBjXSlhO9kpTQ/3pnd9hJUMkYdGrFqCumwX2ZEiWPg624G4704qUvW9DR70CmVYe7zq+Iqsvc5we6cMvLW3H/pVUoSTPh84NdeOzDRlxbl4dUszasMOwfCXwJGG31SqVg/npBBQOau4dRmGJEc/cwvrEgA/OzLLK+i/LWEhNfHY61SygZyBBEKHFntgPgi00P4keNL+Kqvn78OcGMJVyD9arA33MxLVUUi2Jq6mxPS+WcY8jpkfUZ7BXLIIaEe6kglPYlHC2QIWbEJPoM0xJ9855FdNg2BBY/xedmbewN1GQ4BiWCcJQo4khv6HuZAjCmRRaFUoMa1dxedJgOxDTHV2865YTePxGTl2ARKIpDMQo45HRHTLMOxqhRho3gydI7NaHRPpNOmuopHEOrinLEfQbz+cEufOsPm6PqSk+ureNl+zrgrVuFPHylBlhwJTD/CkEsWnIn79C16XFsGs7D3Vut/lXBhxbZsMzQEjWn00jubFkWHd645TR/XaBYU2GTRAz7gmoKe4ed487xBgSBuCjPiurcxLAuo2LfpvE6jE6ktYHYd0pqEiMVgf0jgTrJ4FTR0QqYFQz+KKBVkgIaHAm06DUhUcJgM4F4dwmlVhMEEUo8CknOOapfqAYHR6I2ESdnniwIRp/5zWxISxWdRmXCL0xksE8qFoedo84HRo3SL/rE+SwxKAtGKgwTp7DFUlg4B+x9wMZfCWJuywvCYnnFRYL/g+2IsAA+0A44B0Lfr9QEBKDUkCZYKBpTou8MT5wwXr/JiweDDhdu+3M9PF6OO84tG9XkZcAelPY5UZMXlSIg3jShUT25KPRFATXybWadcG9QK6d2IWWWcdqD69Fqi152Grm2jhezL53i1H8X0k6rr4muQY1xNX78wQ6M+Ex9Wm0j+N6nBvz3qtW4bJzHCG7UKxWEvcOusCISAI712VH3y/VhXxP7MolRwiyrDvMyE3wTYkAMJhrkzmv/3N2OR/6xP2o9HsV6EVHscc7xvRe+xurFuUgyarCnrR/r93agKsuCj/Z0yGoKR3OVAwCzVl4XmGHR+WsDrXoNnvnkAGwjblxem43vLCv0RxKj1VaDUkIJgpgpfHX8K5g1ZqwpX4O/7P8LVpetRl1m3XQPKyximYRfCA7J6wel0UHRbbR3eHSnUa1KIUsJLU41IdEoLAgmykRiYJ/x1pBPCWI7ssF2wQ1emmbqTzFti2xQ89UfAK8TSJ0HpJYBJedGMKgZo6c1ETVcHm+grs8ZEHuBCF/gXmr2MuhwySKDg6OYvNz0py2y5woGX0TPF8XzibsUkzZU8I3T5IWYfj4/2IX2fgeyrbqYfN8MhoSkyBS4nUYyqPmvd3fDoFGGadYb2rNprEa9CoawKTYJOhXuuqAipEnvaDUVoyFGp6Q9qD4/2IWnNxzAdUvzw0YHRdEnNZER7/tHItdHPvd5k/9xklGNYacbFr0a+ckGLNRb5NHBoDRRq14N8xgrwp8f7IJCofCLvNVLclCVHb0ULnIJJQhiprC5bTN++MkP8dgZj6Eusw6nZJ6CH37yQzyy4pGYiknRbTrUWVQuBP0icWhsp2lpL8JEg+AyvSBb6Dcocxr1zXuJRuFer5khgjAY0cF0oC2QTjrQFt7J1OMIfb/GLAhAcwaQc1IgkmjOFN7zz58J29x2YPVrs8p0ZarhnMPu8kYQeIFooKyVQ1DbB1EEDjrccI6z1k8a9TNp1TBplUg2aZCXHOrwubXZhpI0I/6xux1KxvCr1dXY3z6AQ11DuPmM4qiavBAzA/H7ZkmaCRa9GredUxrzEiRKbRU5wbRTl8cb1JA3fPsJ24gTnx0I1/w2FDFCaJFFATWyCGFiBEF46yvb8MGudjg9gT9KGqUC589Px/9cu2hc5xf/QAb3GrRJROC+4wP4ZH8nKjLNYIzheN8IOvqFiW20/1HBJjJWiWuoVBAGHmvwyuYW/GHTYUoJJQhixhFvqa1/3PlH2Hoz8JfPdP657orT7LAmHse3q4J9W0PhnAu9aINSQoPTSHuDFkT77a6ItVEKBn+9uOimLcx9AZEYPO+Nuzn9TMDrBYa7JaIwUhTxeHgHU50lEC00Z4ZJMfXdxmoT9liV4FC//C7grHtj87POYIJTPqXpnYN2eT2fEB30hEn7nLjDp0GjDOPgqfZH9SK5fIppnica9RO/z4jGK1MhKojpRfy++Zt/CkaOr950SlS+b1KN5DgIZ1KjVjJctCATuUkG/wQpd18bfbVUqWAyQ5ldrX2wh1l1SjZq8Py36/wCyqRVnfDk+PnBLnzvha+hVynRPeSE1aiG3eXFPRdWIC/RIBGGbn+UUBYh9InH0VbHxElfo1Kgvd8BrUoBzoEVZamCq5xBLasrFIWjVT9xi/FYG8iQyCMIYjLEm5AMN9dpVQp8Z1khKrMSgpxF5bWFYlnFaF+gzTqVvz4w0IZCIgT9tYSBkgmzboqNZaKF1yO4vQenkwZHEYc6hFZiwegT5UJQKhD9gjEDUEehF9zhjcCfLheO6xqOm6b0U5HyGYxSwWDUKENr9zSBaF8gFdQn9HTytE+TVg2jVgmDRhXRNX4qiIXxCjHzmazBUjAkJMdBJJMaICCcxLoJqz5cDUWoqYw5SBD++8tbJxwtFFtM2EZJFe0LShPt6Leja2gU91kfYo/BkCigRPiFGMsE1Q3Gu4EMQRDEZIg3ITnaXCfFoFEGnEWN8gwYmUiU1BZa9OoZa4s/ITxuQfwFp5OGE4jhWlwYkuVC0JwRGlE0pU/ewG+8+Ep37tfdhV3aarx6nivqpTsiMynl0y8Cg1I+RZEXLhJo0qqi31Nzmom28Qox9yCznXEw2sR64IFvTHq11OH24MKqDPxzTwcS1Cr0290wapVwuTlUSoafvbkzxG1UvI22+iumioopoqJRzsGOQdQftWFFWSour82WiMNAKql6khP+bDCQIQiCmEtE6gHMALx/+3Jf9HAGGctEE48rTL1hGIOaoU6EFmkwwZ1UFIUZC4KiiDO4xUXrVmD1c9j1D7XwvHC5ICJbtwKFy2dUyme2VQ+T1hShn190Uj7nElNtvELMPUhI+kgxasJG8VKMGr+I9Ho5BuyBlFBpOmi/pBYkuJ7QNiJ3kBvxlUAMOYQ0izfqj8lqBhP0auQmGWDRq/xRQZkQNASiheFWzsTInSjwblpRFPU/HGQgQxAEEX9kWfXhW0RZ9SjPME/DiKKA2yEXiJGiiMNdoe+V9kA0ZwFZi8JHEY2pgFI99T9bBDxeHhL1E9M9pRG+AYcbmw+fBMMeJfa198Pj5Vj5P5vQNeBCv70C/B/vn3DKp0knb+ouCDxlXKR8zgWmw3iFmHuQkPTx04srcdfr22VppwyAXqPEil99PKZZAADo1UpZKmhekgELc9R+EwFRLK7f04436o/hhlPycee55VGtD5kKgQdQtJAgCCIe+dH55SE1knq1Ej86fwamvLlG5EY0kaKII72h72VKX7QwHbDmCS6mMoHouxlTp6wHotvjFaJ+Tre/7k8mBu1BwjAkPdTjjwAGO8BHQqNUQKtWYMjhhlqpgEapgEIBdA85cVpJMopSTXM25XO2I35PE41X6HsaEQtISPoQ+x/e/ZcGONwcDEBukh6FKaZA70RJe4lAZDAQLRxPKtDnB7uwsbHLHy08vyojLgUeRQsJgiDiD3Gu+9UH+6LWA3jCOIdC00mlAlEUjPa+0Pcq1IHaw6QiIO+U8A6mhuSoCESXxxvezCUo+id7PZxIdLjH7HcsolEp/HV9ophLNWlRmKL2Cb4wQk8XeC7dLqZ8iqYrCSYVjvSM4Llvn0Tz9SxH/J4mCkmAvqcR0YeEpIS0BC2MWjVuWi44hD54xcKo/sJROihBEAQx3VxWm41XNrcgJ1EfNVc/AIBjIIwpTXAfxHbA0R/6XqUmIARTy4CiFWHMajIAfRKgGL0ezuXxYsjuxoDdIdT3hQg7j7/2byA4CmgPuIMO2N1wjNPsRatS+Gv3RBGXnqDzPxZdPwXBp5QJQZMu9vV+pxanID1B6zddoe8Ec4eo/o4TRBAkJH1MhcijdFCCIAhiWtn0OJC9CD/r/om4QXD1bN0avmcy54LwkwnECH0QnYOh71fpAkIwvRIoOTtsH0Sn2oIhp0eW1ukXfj1uDLa5MejowZCjw/eaJ2z0b2ACTp86tSKkn1+mRedv7SB1+zTLIn+haaCTNa+LNWS6QhBELCAh6WMqRB5FCwmCIIjp5K2uDFz46Q0weBJgVxiAbS/C9d6P8feMtbgEj4Vvc+EO4/SqNsBryoDHmAZnchXsWWdgWJuCAXUq+pRJ6FEmoxuJ6HbrMOT0BKJ/x91+ISi0eWjFoKN53OJPr1ZKDFwEIZdl1clTPDWh6Z4BMxjxdeXsaFUyDsh0hSCIWEFC0geJPIIgCGK2k7LgHNyyvQ2/9fwCauaB641bcYvrVtzY9A5wZDecSiMG1cnoV6fApihGt3kJOpGIdq8VrW4LjnosaHGY0TGsgXNgtDYPQ75baJsHk1aFbKsGZp05pO+fLN0zqN7PqJk74i+akOkKQRCxgvHRbEjjiMk2aSYIgiCIiTJao+ZYEI257vODXdjxf7fiJtW7eNJ9Kd5xL4WdadDBEzEMHQDAqFGGj+pJ0z11grgz6dQh6Z4mSa8/avNAEAQRv4w2z1FEkiAIgiDmEKcqdmOhcj1+474c39F+hAtWXg0Unu4XgkZN9FpSEQRBELMXEpIEQRAEMVc4vBGuP9+Ate4f4rB5EXY5q/Hbj26B+urngbTl0z06giAIIo6IabEBY+wCxtg+xtgBxtg9YV7XMsZe9b3+JWOsQPLaj33b9zHGzo/lOAmCIAhiLtC041Pc4roVXaknIyfRgBuv+yZucd2Kph2fTvfQCIIgiDgjZkKSMaYE8FsAFwKoBHANY6wyaLfvAOjlnJcAeAzAQ773VgK4GsB8ABcAeMp3PIIgCIIgTpD3LVfjxuu+CYteDUAwXrnxum/ifcvV0zwygiAIIt6IZWprHYADnPNDAMAY+zOASwHsluxzKYD7fI9fB/AkY4z5tv+Zc+4AcJgxdsB3vH/FcLwEQRAEMasRHcqlbp3kUE4QBEGcCLFMbc0GcETy/KhvW9h9OOduAH0Aksf5XjDGvs8Y+5ox9nVnZ2cUh04QBEEQMwOa6wiCIIiZSFw3ZOKc/55zvoRzviQ1NXW6h0MQBEEQUYfmOoIgCGImEksh2QogV/I8x7ct7D6MMRUAC4Ducb6XIAiCIAiCIAiCmAZiKSS/AlDKGCtkjGkgmOe8FbTPWwBu8D2+EsBHnHPu2361z9W1EEApgM0xHCtBEARBEARBEAQxTmJmtsM5dzPGfgDgAwBKAH/knO9ijN0P4GvO+VsA/gDgTz4znR4IYhO+/dZBMOZxA7iFc+6J1VgJgiAIgiAIgiCI8RNL11Zwzt8D8F7Qtp9JHtsBrI7w3gcAPBDL8REEQRAEQRAEQRATJ67NdgiCIAiCIAiCIIiph4QkQRAEQRAEQRAEMSFISBIEQRAEQRAEQRATgoQkQRAEQRAEQRAEMSFISBIEQRAEQRAEQRATggltG+MfxlgngOYoHS4FQFeUjkXED/S5zz3oM5+bRPNzz+ecp0bpWGNCcx0xSegzn5vQ5z73mJJ5btYIyWjCGPuac75kusdBTC30uc896DOfm9DnLkDXYe5Bn/nchD73ucdUfeaU2koQBEEQBEEQBEFMCBKSBEEQBEEQBEEQxIQgIRme30/3AIhpgT73uQd95nMT+twF6DrMPegzn5vQ5z73mJLPnGokCYIgCIIgCIIgiAlBEUmCIAiCIAiCIAhiQpCQDIIx1sQY28EYq2eMfT3d4yFiA2Psj4yxDsbYTsm2JMbYh4yxRt994nSOkYguET7z+xhjrb7f93rG2Demc4xEdGGM5TLGPmaM7WaM7WKM3ebbPqd/12memxvQPDc3oblu7jGdcx0JyfCcyTmvIavkWc1zAC4I2nYPgPWc81IA633PidnDcwj9zAHgMd/vew3n/L0pHhMRW9wA/oNzXglgKYBbGGOVoN91gOa5ucBzoHluLvIcaK6ba0zbXEdCkpiTcM43AugJ2nwpgOd9j58HcNlUjomILRE+c2IWwzlv45xv9T0eALAHQDbod52YA9A8NzehuW7uMZ1zHQnJUDiAfzDGtjDGvj/dgyGmlHTOeZvv8XEA6dM5GGLK+AFjbLsvHYjSvGYpjLECALUAvgT9rtM8N3eZ6//35zI0180BpnquIyEZyjLO+SIAF0IIDS+f7gERUw8X7IzJ0nj28zSAYgA1ANoAPDqtoyFiAmPMBOAvAG7nnPdLX5ujv+s0zxFz9f/+XIXmujnAdMx1JCSD4Jy3+u47APwNQN30joiYQtoZY5kA4LvvmObxEDGGc97OOfdwzr0A/hf0+z7rYIypIUysL3HO/+rbPKd/12mem9PM6f/7cxWa62Y/0zXXkZCUwBgzMsbM4mMA5wHYOfq7iFnEWwBu8D2+AcCb0zgWYgoQ/8D6uBz0+z6rYIwxAH8AsIdz/mvJS3P2d53muTnPnP2/P5ehuW52M51zHRMinQQAMMaKIKzOAoAKwMuc8wemcUhEjGCMvQLgDAApANoB/CeANwCsA5AHoBnAGs45FazPEiJ85mdASPXhAJoA3CSpJyDiHMbYMgCfAtgBwOvb/BMItSNz8ned5rm5A81zcxOa6+Ye0znXkZAkCIIgCIIgCIIgJgSlthIEQRAEQRAEQRATgoQkQRAEQRAEQRAEMSFISBIEQRAEQRAEQRATgoQkQRAEQRAEQRAEMSFISBIEQRAEQRAEQRATgoQkQRAEQRAEQRAEMSFISBKzFsaYlTF2s+R5FmPs9SkewyuMse2MsTsYY7czxgxTef7xwhj7SdDzz2N4rjMYY6eewPtqGGPfiPDajYyxTsbYsxM85v2MsXPG2OcqxtgBxtg7Ezk2QRBErKF5bvzQPDfqPjTPEScE9ZEkZi2MsQIA73DOq6bp/BkANnHOS3zPmwAs4Zx3TeAYSs65J8JrKs65O0pjHeScm6JxrHGc6z4Ag5zzRybwHhWA6yFcvx+Eef3GSK9FA8bYGQB+yDm/OBbHJwiCOBFonpvQWGmeG/38Z4DmOWKCUESSmM08CKCYMVbPGPsVY6yAMbYT8K/svcEY+5Ax1sQY+wFj7E7G2DbG2BeMsSTffsWMsfcZY1sYY58yxiqCT8IYq2OM/cv33s8ZY+W+l/4BINt3/v8EkAXgY8bYx773ned731bG2GuMMZNvexNj7CHG2FYAq4PO9Rxj7HeMsS8BPBxpfIyxlYyxL31j+idjLN233cQY+z/G2A7fCvIVjLEHAeh943zJt9+g7575rt1O33uu8m0/gzG2gTH2OmNsL2PsJcYYC3NtbmWM7fad68++Lz1rAdzhO9/po4z1PsbYnxhjnwH4E4D7AVzle99Vo33wE/h8n2OMXSm57j/3fR47wn3WBEEQMwya52ieo3mOmD4453Sj26y8ASgAsDPccwA3AjgAwAwgFUAfgLW+1x4DcLvv8XoApb7HJwP4KMx5EgCofI/PAfCXCOdvApDie5wCYCMAo+/53QB+Jtnvrgg/03MA3gGgHG18ABIRyDj4LoBHfY8fAvC45HiJvvvBoPMM+u6vAPAhACWAdAAtADIBnOG7ZjkQFqT+BWBZmPEeA6D1Pbb67u+DsOqJMcZ6H4AtAPSSz+zJCNdF9toEPt/nAFwpue7/7nt8M4BnJcc7A8Kq/7T/v6Yb3ehGN/EWZp7xP5/A30Ga52ieA2ieo9sJ3FQgiLnLx5zzAQADjLE+AG/7tu8AsNC3cnoqgNcki5DaMMexAHieMVYKgANQj+PcSwFUAvjMd2wNhElK5NVR3vsa59wzxvhyALzKGMv0Hfuwb/s5AK4Wd+ac944xzmUAXuFC2lE7Y+wTACcB6AewmXN+FAAYY/UQvlBsCnr/dgAvMcbeAPBGhHNEGisAvMU5HxljjJEY9fON8J6/+u63AFh1guclCIKYKdA8R/NcMDTPEVGDhCQxl3FIHnslz70QfjcUAGyc85oxjvMLCH/ML/eltGwYx7kZgA8559dEeH1olPeKr402vv8B8GvO+VtMqHu4bxxjmijS6+dB+L8nFwFYDmAlgHsZYwvC7DPaWEe7DhMZX7jPd7T3RPp5CIIg4gma5yYHzXMEMQr0H4iYzQxASPk4ITjn/Yyxw4yx1Zzz13y1EQs55w1Bu1oAtPoe3ziO8XQB+ALAbxljJZzzA4wxI4Bszvn+KI1POqYbJG/7EMAtAG4HAMZYom+11sUYU3POXUGn+RTATYyx5wEkQZgsfwRgzLoKxpgCQC7n/GPG2CYIK8Qm33VIkOwaaazBTOrzJE6MLVu2pKlUqmcBVIHq6ucSXgA73W73dxcvXtwx3YMhIkLznADNcwQxDZCQJGYtnPNuxthnTDAe+DuA357AYa4D8DRj7KcQUnn+DCB4gn0YQsrPTwG8O8qxfg/gfcbYMc75mUxwYHuFMSam6fwUwLgn2DHGdx+EVKBeAB8BKPTt/18QJvadEFYjfw4hzeX3ALYzxrZyzq+THP9vAE7xHZNDqGk5Ps4CfSWAFxljFggr009wzm2MsbcBvM4YuxTAv48y1mA+BnCPL73ovznno6VFEVFCpVI9m5GRMS81NbVXoVCQzfccwev1ss7Ozsrjx48/C+CS6R4PER6a52ieI4jphNp/EAQR9zCyRY8ZDQ0NhxYsWEAicg7i9XrZjh07Equrq4umeywEMdeheY6YiVCaEkEQs4ERABeyCTZqHg9MsGB/CsBYhg2zFQWJyLmJ73On7wkEMTOgeY6YcdAEQRBE3MM5f5VzXsw5/26Mjl3JOf9mtI89W6itrR0zBeyqq67K37Jliw4A7rnnnoyJvt9gMNSG23733XdnlJSUzC8rK6usqKio/Oijj4wA4HK58IMf/CA7Pz+/qqKiorKioqLy7rvv9p/3yJEjqpUrVxbm5OQsmD9//ryampqKF154wQoA77zzjtlsNtdUVFRUFhUVzf+P//iPzLHGxxhb/L3vfS9HfP6zn/0s/c4778yS7lNRUVF58cUXjyu6d+edd2alpaUtvP3227PG3jtAXV1deWZm5gKv1+vfds455xSL12/Xrl3aioqKykjXkyCImQnNc8RMhIQkQRAEMSm2bdu2d6x9Xn311ebFixfbAeCJJ56QCbPxvD8c//znP40ffPCBdceOHbv379+/++OPP95fVFTkBIDbbrstu62tTb1nz55de/fu3f2vf/1rr8vlUgCA1+vFypUrS04//fTBo0eP7ti1a9eedevWHTpy5IhGPPaSJUsG9+7du7u+vn7P66+/nrxp0ybDaGPRaDT8vffeS2xrawvrPbB161ad1+vF5s2bTf39/eOae9euXdv++OOPHxv/FREwm82eDz/80AQAXV1dyo6ODn+rhvnz5zv27t27e6LHJAiCIIhgSEgSBEEQk0KMbr3zzjvmurq68gsuuKCosLBw/iWXXFIoRsbq6urKN27caLj55puzHQ6HoqKiovKSSy4plL6/r69Pccopp5RVVlbOKysrq3zxxReto523tbVVnZSU5Nbr9RwAMjMz3QUFBa6BgQHFyy+/nPrss8+2GAwGoRt4YqL317/+9TEAePvtt81qtZrfddddneKxysrKnPfee2+IO2lCQoJ3wYIFw3v37tU+8cQTyWeffXZxXV1deX5+fpU0UqlUKvm3vvWtzl/+8pfp4cb6wgsvJK1Zs6Z7+fLl/S+//PKoP1c47rzzzqxVq1YVLF68uDwrK2vB888/b127dm1OWVlZ5emnn17qcDj8TfZWrVrV89JLLyUBwIsvvmhduXKlbaLnIwiCIIixICFJEARBRI09e/bof/vb3x45cODArpaWFq0YGRN56qmnWrVarXfv3r2733rrLWlTbhgMBu+77757YPfu3Xs++eST/T/5yU9ypCmawVx22WX9x44d0xQUFFRdf/31ee+++64JAHbv3q3NzMx0JiYmhn3zjh079AsXLhwez89z/Phx5bZt24w1NTUjALB9+3bjW2+9dWDXrl273nrrraSNGzf6I5U/+tGPOv76178mdXd3K4OP88YbbyTdcMMNvddee23PunXrksZz7mCam5u1n3/++f6//OUvB9auXVt41lln9e/fv3+3Tqfzrlu3ziLud9555w188cUXJrfbjddeey3pW9/6Vs+JnI8gCIIgRoOEJEEQBBE1FixYMFRcXOxSKpWYP3/+8MGDBzVjv0vA6/Wy22+/PaesrKzyzDPPLOvo6NAcPXo0Ypsqi8Xi3blz5+4nn3yyOTU11X3DDTcUP/HEE8nB+/3mN79JrqioqMzIyFh44MABdfDr3/zmN/PKy8srq6qq5onbvv76a9O8efMqzz777LLbbrvt+JIlS+wAsGzZsv6MjAyPyWTiF110Ue+GDRv8QjkpKcm7evXq7gcffDBNevyNGzcakpKS3KWlpc5LLrmkf9euXYb29vYQsTkW55xzTp9Wq+V1dXUjHo+HXXnllf0AMH/+/JHDhw/7r7NKpeJ1dXWD//u//5tkt9sV5eXlzomeiyAIgiDGgoQkQRAEETW0Wq3f4VWpVMLtdrPR9pfyzDPPJHV3d6t27NixZ+/evbuTk5NdIyMjo85TKpUKF1988cBjjz127Fe/+lXLG2+8kVhZWeloa2vT9Pb2KgDgtttu6967d+9us9ns8Xg8bMGCBSPbt2/3RxL/9Kc/tWzYsGF/b2+vX7QuWbJkcM+ePbt37dq1R5oCK/RDDxD8/Mc//nH7yy+/nDI0NOQf95/+9KekQ4cO6bKzsxfk5+cvGBoaUr744ouJ470uIuK1VSqVUKlUXKEQTqFQKEKu83XXXdfz4x//OG/VqlXkwkgQBEHEBBKSBEEQxJSiUqm4tKZPpK+vT5mSkuLSarX87bffNh87dmzUaGZDQ4N2x44dYqNzbNu2TZ+Tk+M0m83eq6++uus73/lO3vDwMAMAt9sNl8vFAGDlypUDDoeDPfTQQ6niewcHB8c1H27atCmhvb1dOTg4yN577z3rihUrBqWvp6ene1auXNn78ssvpwCAx+PB22+/nVRfX7+rtbV1R2tr645XXnnlwGuvvXZC6a3j5fzzzx+89dZb27797W9TWitBEAQRE0hIEgRBEFPKdddd1zlv3jy/2Y7Id7/73Z6GhgZjWVlZ5fPPP59cWFhoH+04/f39ym9961uFxcXF88vKyir37t2rf+ihh44BwG9+85vWjIwMV0VFxfx58+ZVnnTSSRVXXXVVV35+vkuhUODtt98++Omnn5qzs7MXLFiwYN71119fcN999x0da+wLFy4cuuSSS4rnz58/f+XKlb3Lly8PqbW89957j9tsNhUAvP/++6b09HRnQUGBS3z9wgsvHDhw4IC+ubk5JM02WigUCtx///3tmZmZ7lidgyAIgpjbMM6pzzRBEAQRnoaGhqbq6uqu6R7HTOCJJ55I/vrrr40vvPBCS6zPdeedd2aZTCbP/fff3x6L4xsMhtrh4eFtY+3X0NCQUl1dXRCLMRAEQRDxDUUkCYIgCGKGYTKZPC+88ELq7bffnhXN4+7atUtbUVFRmZyc7Bp7b4IgCIKIDEUkCYIgiIhQRHJuQxFJgiAIIhIUkSQIgiAIgiAIgiAmBAlJgiAIgiAIgiAIYkKQkCQIgiAIgiAIgiAmBAlJgiAIIqpc+uSm8kuf3FQ+3eOYadB1IQiCIGYTJCQJgiCIGc/rr7+eUFBQUJWXl1f1k5/8JCP49fvuuy9d7Cd5yimnlO3fv18jvqZUKhdXVFRUVlRUVJ511lklUzvy2ELXhSAIgpguSEgSBEEQUePFL5qTdrf1GxuO9pnqHvjnghe/aE6a7DHdbjfuuOOOvPfee2///v37d/3lL39J2rJli066z+LFi4fr6+v37N+/f/dll13We8cdd+SIr2m1Wu/evXt37927d/dHH310YLLjmSiPfLAv/Z972s3Sbf/c025+5IN96ZM5brxfF4IgCCK+ISFJEARBRIUXv2hO+sU7u/NdHs4AoGPAofnFO7vzJysmN2zYYMzPz3dUVlY6dTodX7VqVc/rr79ule6zcuXKAbPZ7AWAZcuWDba1tWnCHmwaqMmzDt+5rr5owO5WAoKIvHNdfVFNnnV4MseN9+tCEARBxDckJAmCIIio8MT6xmyH2yubVxxur+KJ9Y3ZkznukSNHNNnZ2U7xeU5OjrO1tTWiIHrmmWdSzznnnD7xudPpVFRVVc2rrq6u+NOf/mSdzFhOhHPmpQ/8ek3NoeaeYV1bn11z57r6ol+vqTl0zrz0gckcN96vC0EQBBHfqKZ7AARBEMTsoHPAEVbERNoeC5566qmkhoYGwzPPPLNP3NbY2Li9sLDQtXv3bs25555bvmjRopH58+c7pmpMgCAmk40aV8eAQ/NvpxW0TVZETpSZel0IgiCI+IUikgRBEERUSDVrnRPZPl5yc3NlkbajR4/KInEib7zxhvmRRx7JfO+99w7o9Xoubi8sLHQBQGVlpXPp0qUDmzdvNkxmPCfCP/e0m7uHnOo0s9b5l61HU4NrJk+E2XBdCIIgiPiFhCRBEAQRFW49u7RVq1J4pdu0KoX31rNLWydz3BUrVgw1NTXp9u7dq7Hb7eyvf/1r0hVXXGGT7vPZZ5/p//3f/z3/zTffPJCdne0Wt3d2dipHRkYYALS1tam+/vpr08KFC0cmM56JItZE5icZ7JkWnfPXa2oO3bmuvmiyYjLerwtBEAQR31BqK0EQBBEVrl+a3wMAP397V4HLw1maWeu89ezSVnH7iaJWq/Hoo4+2XHDBBWUejwfXXntt15IlS+y333571kknnTR03XXX9f3oRz/KHR4eVq5evboYALKyspwfffTRgfr6et0tt9ySzxgD5xy333778cWLF9uj8fOOl/oWm+HXa2oO/c/6xiwgUDNZ32IzTCbFNd6vC0EQBBHfMM752HsRBEEQc5KGhoam6urqrom859InN5UDwJs/WLZvrH3nEvF4XRoaGlKqq6sLpnscBEEQxMyDIpIEQRBEVIknoTSV0HUhCIIgZhNUI0kQBEEQBEEQBEFMCBKSBEEQBEEQBEEQxIQgIUkQBEEQBEEQBEFMCBKSBEEQBEEQBEEQxIQgIUkQBEFEl9+fWY7fn1k+3cOYcdB1IQiCIGYRJCQJgiCIGc/rr7+eUFBQUJWXl1f1k5/8JCP49SeeeCI5MTGxuqKiorKioqLy17/+dcp0jHOqoetCEARBTBfU/oMgCIKIHl/9IQnHdxjhdTE8UrYAK+5uxUnf6ZnMId1uN+644468Dz74YH9RUZGrurp63hVXXGFbvHixXbrfypUre1944YWWyf0AMWD9L9KRs2RYtm3f3804+rUBZ/9/7Sd62Li/LgRBEERcQxFJgiAIIjp89YckfPDjfHhdDAAw2K7BBz/Ox1d/SJrMYTds2GDMz893VFZWOnU6HV+1alXP66+/bo3GkKeEnCXD+NvaIjj6lQAEEfm3tUUh4nKCxP11IQiCIOIaEpIEQRBEdPjkoWy4HfJ5xe1Q4JOHsidz2CNHjmiys7Od4vOcnBxna2urJni/v//979aysrLKCy64oOjAgQPqyZwzqpRfOIDLf3cIvYd16G/V4G9ri3D57w6h/MKByRw27q8LQRAEEdeQkCQIgiCiw2BHiIgZdXsUWbNmja2lpWXH/v37d5999tn9119/fWGszzkhyi8cgCHFhcF2Daqv6ZysiBwvM/66EARBEHELCUmCIAgiOpjSnBPaPk5yc3NlkbajR4/KInEAkJGR4dHr9RwA7rjjjq5du3YZJnPOqLPv72YMd6lhSnei4ZVU7Pu7ebKHnBXXhSAIgohbSEgSBEEQ0WHF3a1Qab2ybSqtFyvubp3UYVesGGpqatLt3btXY7fb2V//+tekK664wibdp7m52Z+y+fLLL1uLiorsIQeaLsSayMRCOxKynbj8d4fwt7VFkxWTcX9dCIIgiLiGXFsJgiCI6CC6s/797gJ4XQymdGc0XFvVajUeffTRlgsuuKDM4/Hg2muv7VqyZIn99ttvzzrppJOGrrvuur6HH3447YMPPrAqlUputVrdzz33XFM0fqSocPRrAy7/3SF88nAWgEDN5NGvDZNJcY3760IQBEHENYxzPt1jIAiCIGYoDQ0NTdXV1V0TetPvzywHAHz/432xGFPcEofXpaGhIaW6urpgusdBEARBzDwoIkkQBEFElzgSSlMKXReCIAhiFkE1kgRBEARBEARBEMSEICFJEARBEARBEARBTAgSkgRBEARBEARBEMSEICFJEARBEARBEARBTAgSkgRBEERUueada8qveeea8ukex0yDrgtBEAQxmyAhSRAEQcxoVq9eXZCUlFRdWlo6P9zrXq8XN954Y25eXl5VWVlZ5aZNmwxTPcbpgK4LQRAEMZ2QkCQIgiCixqv7Xk3a27vXuLN7p+nMdWcueHXfq0mTPea3v/3trrfeeqsx0uuvvfaa5dChQ7qmpqadTz/9dPPNN9+cN9lzRpMntj6RvuHIBrN024YjG8xPbH0ifTLHjffrQhAEQcQ3JCQJgiCIqPDqvleTHv7q4Xy3180AoGukS/PwVw/nT1ZMXnjhhYOpqanuSK+/+eab1uuuu65boVDg7LPPHurv71c1NzerJ3POaLIwdeHwvZvuLRp0DioBQUTeu+neooWpC4cnc9x4vy4EQRBEfENCkiAIgogKv2v4XbbT45TNK06PU/G7ht9lx/K8bW1t6oKCAqf4PDMz0zmTBNMZuWcMPLDsgUNHBo/o2ofbNfduurfogWUPHDoj94yBWJ53pl8XgiAIIr4hIUkQBEFEhe6Rbs1Ets8lzsg9YyBJl+TqHOnUrCxe2RlrEUkQBEEQsYaEJEEQBBEVkvXJzolsjxaZmZmupqYmv1hta2vT5Ofnu2J5zomy4cgGc4+9R52qT3W+ffDt1OCayVgQD9eFIAiCiF9ISBIEQRBRYW312laNUuOVbtMoNd611WtbY3neSy65xPbSSy8le71erF+/3mg2mz0zSTCJNZG5plx7uiHd+cCyBw7du+neoliLyZl+XQiCIIj4RjXdAyAIgiBmB1eVX9UDAA9ufrDA7XWzFH2Kc2312lZx+4mycuXKwi+++MLc29urSk9PX3jPPfccc7lcDADuuuuuzjVr1vS9++67lvz8/Cq9Xu999tlnm6Lw40SN7Z3bDQ8se+DQMw3PZAGBmsntndsNk0lxjffrQhAEQcQ3jHM+3WMgCIIgZigNDQ1N1dXVXRN5zzXvXFMOAK9c/Mq+2IwqPonH69LQ0JBSXV1dMN3jIAiCIGYeFJEkCIIgoko8CaWphK4LQRAEMZugGkmCIAiCIAiCIAhiQpCQJAiCIAiCIAiCICYECUmCIAiCIAiCIAhiQpCQJAiCIAiCIAiCICYECUmCIAgiqhxevab88Oo15dM9jpkGXReCIAhiNkFCkiAIgpjRHDhwQH3yySeXFRcXzy8pKZn/i1/8Ii14H6/XixtvvDE3Ly+vqqysrHLTpk2G6RjrVELXhSAIgphOSEgSBEEQUaPnlT8n2ffuNdp37DA1nr58Qc8rf06a7DHVajUeffTRowcPHtz11Vdf7fnDH/6QtmXLFp10n9dee81y6NAhXVNT086nn366+eabb86b7HmjRcfjj6cPfPyxWbpt4OOPzR2PP54+mePG+3UhCIIg4hsSkgRBEERU6Hnlz0kdDz6YD5eLAYC7s1PT8eCD+ZMVk/n5+a5ly5YNA0BiYqK3uLh4pKWlRSPd580337Red9113QqFAmefffZQf3+/qrm5WT2Z80YLfXX18LG77ynyDA4qAUFEHrv7niJ9dfXwZI4b79eFIAiCiG9ISBIEQRBRofupp7K5wyGbV7jDoeh+6qnsaJ1j3759mt27dxtWrFgxKN3e1tamLigocIrPMzMznTNFMJnPPHMg66EHD7laWnSu48c1x+6+pyjroQcPmc88cyBa54jH60IQBEHENyQkCYIgiKjg7urSTGT7ROnr61OsWrWq+MEHHzySlJTkjcYxpwrzmWcOKJOSXJ7OTo3lsks7oyki4/m6EARBEPELCUmCIAgiKqhSUpwT2T4RHA4Hu+iii4pXr17dc8MNN9iCX8/MzHQ1NTX5BWtbW5smPz/fNdnzRouBjz82e3p61MrUVGffG2+mBtdMnijxfl0IgiCI+IWEJEEQBBEVkm++uZVptbKIGNNqvck339w6meN6vV5cffXV+WVlZfb77ruvPdw+l1xyie2ll15K9nq9WL9+vdFsNntmimASayLVeXl2dUaGM+uhBw8du/ueosmKyXi/LgRBEER8o5ruARAEQRCzg6Rrru4BgPZf/rIALhdTpaY6k2++uVXcfqJ8+OGHpjfeeCO5tLR0pKKiohIAfv7zn7c2NzdrAOCuu+7qXLNmTd+7775ryc/Pr9Lr9d5nn322adI/UJQYaWgwZD304KGup57OAgI1kyMNDYbJpLjG+3UhCIIg4hvGOZ/uMRAEQRAzlIaGhqbq6uquibzn8Oo15QBQ+Nq6fbEZVXwSj9eloaEhpbq6umC6x0EQBEHMPCgiSRAEQUSVeBJKUwldF4IgCGI2QTWSBEEQBEEQBEEQxIQgIUkQBEEQBEEQBEFMCBKSBEEQxGh4vV4vm+5BEFOP73OnvpQEQRBEWEhIEgRBEKOxs7Oz00Jicm7h9XpZZ2enBcDO6R4LQRAEMTMhsx2CIAgiIm63+7vHjx9/9vjx41Wgxce5hBfATrfb/d3pHghBEAQxM6H2HwRBEARBEARBEMSEoNVlgiAIgiAIgiAIYkKQkCQIgiAIgiAIgiAmBAlJgiAIgiAIgiAIYkKQkCQIgiAIgiAIgiAmBAlJgiAIgiAIgiAIYkL8/6o/qH820G+eAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Parameter estimation for HSA(wt) data set\n", "kinetics_HSAwt = ParameterEstimator.from_EnzymeML(chymo_HSAwt, reactant_id=\"s1\", inhibitor_id=\"s2\", measured_species=\"product\")\n", "kinetics_HSAwt.fit_models(initial_substrate_concs=[0.25, 0.5, 1, 2], stop_time_index=-1, start_time_index=5, display_output=False)\n", "print(\"Kinetic parameters estimates for all models of chymotrypsin inhibition by HSA(WT)-huFc:\")\n", "display(kinetics_HSAwt.result_dict.drop(columns=[\"kcat [1/min]\", \"Km [mmole / l]\"])\\\n", " .style.set_table_attributes('style=\"font-size: 12px\"'))\n", "\n", "# Parameter estimation for HSA(M3) data set\n", "kinetics_HSAM3 = ParameterEstimator.from_EnzymeML(chymo_HSAM3, reactant_id=\"s1\", inhibitor_id=\"s3\", measured_species=\"product\")\n", "kinetics_HSAM3.fit_models(initial_substrate_concs=[0.25, 0.5, 1, 2], stop_time_index=-1, start_time_index=1, display_output=False)\n", "print(\"\\nKinetic parameters estimates for all models of chymotrypsin inhibition by HSA(M3)-huFc:\")\n", "display(kinetics_HSAM3.result_dict.drop(columns=[\"kcat [1/min]\", \"Km [mmole / l]\"])\\\n", " .style.set_table_attributes('style=\"font-size: 12px\"'))\n", "\n", "# Visualize experimental data and fitted models\n", "fig, axes = plt.subplots(1,2, figsize=(12.8,4.8), sharey=True, sharex=True)\n", "for e, (doc, ax, title) in enumerate(zip([kinetics_HSAwt ,kinetics_HSAM3], axes.flatten(), [\"chymotrypsin inhibition by HSA(WT)-huFc\", \"chymotrypsin inhibition by HSA(M3)-huFc\"])):\n", " doc.visualize(ax=ax, title=title)\n", " ax.set_ylabel(\"4-nitroanilin [mM]\")\n", " ax.set_xlabel(\"time after reaction start [min]\")\n", " ax.set_xticks([5, 10, 15, 20])\n", " ax.text(0, 1.1, string.ascii_uppercase[e], transform=ax.transAxes, \n", " size=20, weight='bold')\n", "\n", "handles, labels = ax.get_legend_handles_labels()\n", "\n", "fig.legend(handles, labels, loc=\"lower center\", ncol=2, title=\"initial SGGPpNA [mM]\", bbox_to_anchor=(0.5,-0.2))\n", "plt.tight_layout()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "_Fig. 4: Measurement data and fitted product inhibition model for chymotrypsin reactions with respective HSA inhibitior._\n", "\n", "Both reaction systems are best described by the competitive inhibition model, which is indicated by the lowest AIC and standard deviation on the estimated parameters. Thereby, a $K_{i}$ of 0.460 mM ± 27.24% was estimated for HSA(WT)-huFc and 0.059 mM ± 8.51% for HSA(M3)-huFc. This resembles a roughly 7-fold increase in affinity of HSA(M3) to the enzyme compared to the HSA(wt). \n", "Since the competitive inhibition model describes the data the best, HSA(M3)-huFc presumably interacts with the enzyme in the active site region. " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Save modeling results\n", "\n", "Lastly, the modeling results are written to the EnzymeML documents and the files are exported." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "hide_input" ] }, "outputs": [], "source": [ "for result, enzmldoc in zip([kinetics_HSAwt, kinetics_HSAM3], [chymo_HSAwt, chymo_HSAM3]):\n", "\n", " # Write modeling results to kinetic parameters\n", " k_cat = pe.enzymeml.models.KineticParameter(\n", " name=\"k_cat\",\n", " value=result.get_model_results()[\"k_cat\"].value,\n", " unit=f\"1 / {result.data.time_unit}\")\n", "\n", " K_m = pe.enzymeml.models.KineticParameter(\n", " name=\"K_m\",\n", " value=result.get_model_results()[\"Km\"].value,\n", " unit=result.data.data_conc_unit)\n", "\n", " K_ic = pe.enzymeml.models.KineticParameter(\n", " name=\"K_ic\",\n", " value=result.get_model_results()[\"K_ic\"].value,\n", " unit=result.data.data_conc_unit)\n", "\n", " # Define kinetic model\n", " model = pe.KineticModel(\n", " name=\"competitive inhibition\",\n", " equation=\"-k_cat * p0 * s0 / (K_m*(1+(s2 / K_ic))+s0)\",\n", " parameters=[k_cat, K_m, K_ic])\n", "\n", " enzmldoc.getReaction(\"r0\").model = model\n", "\n", " # Export EnzymeML documents\n", " export = False\n", " if export:\n", " enzmldoc.toFile()" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "ee08ccca155cbd4c8d8727384a736000e255ba20b3c7e9763219ae9cf9e79b2c" } } }, "nbformat": 4, "nbformat_minor": 2 }